dc.creator | Baena S., María A. | |
dc.creator | García Núñez, Jesús A. | |
dc.creator | González D., Alexis | |
dc.creator | Mondragón, Alexandra | |
dc.creator | Caballero B. , Kennyher | |
dc.date | 2021-06-01 | |
dc.identifier | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13450 | |
dc.description | Producers of crude palm oil (CPO) worldwide have seen the need to adapt to the latest quality requirements of various markets and the regulatory requirements of the countries where this oil is marketed. Buyers are demanding more and new quality parameters when negotiating CPO, a raw material that is essential to produce different foods. Today, heavy metals, traces of aromatic and aliphatic hydrocarbons, chloropropanols, and chlorine and phosphorus compounds are most frequently monitored during the evaluation of the properties and characteristics of crude and refined palm oil for marketing. In addition to these quality parameters, other commonly used parameters, such as the free fatty acids (FFA) content, the deterioration o bleachability index (DOBI), and humidity and impurities, should also be considered. Currently, extensive work is being carried out in the search for good cultivation, processing and refining practices that guarantee the reduction of CPO contaminant compounds and pollutant precursors for refined oils. On the other hand, CPO has many minorcompounds with high nutritional potential and the capacity to generate high value-added elements that have not been adequately utilized. This article aims to present some of the characteristics that contribute nutritional value to palm oil and the new challenges the oil palm sector faces regarding the presence and reduction of pollutant precursors and pollutants formed during palm oil production. Likewise, it aims to highlight the practices that have been successful in mitigating these compounds. | en-US |
dc.description | A nivel mundial, los productores de aceite de palma crudo (APC) se han visto en la necesidad de adaptarse a las más recientes exigencias de calidad de los distintos mercados, al igual que a los requisitos normativos pedidos por los países en donde se comercializa este tipo de aceite. Actualmente, más y nuevos parámetros de calidad conforman el grupo de requerimientos exigidos por los compradores durante las negociaciones del APC, materia prim a indispensable para la producción de distintos alimentos. Hoy por hoy, los metales pesados, trazas de hidrocarburos aromáticos y alifáticos, cloropropanoles y compuestos de cloro y fósforo son monitoreados con mayor frecuencia durante la evaluación de las propiedades y características del aceite de palma crudo y refinado para su comercialización. Adicional a estos parámetros de calidad, es necesario tener en cuenta los que comúnmente se utilizan como el contenido de ácidos grasos libres (AGL), el índice de deterioro de la blanqueabilidad (DOBI) y la humedad e impurezas. En la actualidad, se trabaja de manera exhaustiva en la búsqueda de buenas prácticas de cultivo, procesamiento y refinación que garanticen la reducción de compuestos contaminantes del APC y de los precursores de contaminantes para los aceites refinados. De otro lado, el APC tiene una gran cantidad de compuestos menores con alto potencial nutricional y la capacidadde generar elementos de alto valor agregado que no han sido debidamente utilizados. El objetivo del presente artículo es dar a conocer parte de las características que atribuyen valor nutricional al aceite de palma y los nuevos retos que enfrenta el sector palmero en lo referente a la presencia y disminución de precursores de contaminantes y de contaminantes formados durante la producción del aceite de palma, asimismo, pretende resaltar las prácticas que han dado buenos resultados en la mitigación de estos compuestos. | es-ES |
dc.format | application/pdf | |
dc.format | text/xml | |
dc.language | spa | |
dc.publisher | Fedepalma | es-ES |
dc.relation | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13450/13222 | |
dc.relation | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13450/13731 | |
dc.relation | /*ref*/AECOSAN. Agencia Española de Consumo y Seguridad Alimentaria y Nutrición. (2016). Aceites Minerales, 4-7. Recuperado de http://americanoils.co/es/productos/aceitesminerales-usp.html | |
dc.relation | /*ref*/Barrera, C., Hamner, H. C., Perrine, C. G. & Scanlon, K. S. (2014). National Health and Nutrition Examination Survey. Encyclopedia of Human Services and Diversity, 118(3), 464-470. doi: 10.4135/9781483346663.n401 | |
dc.relation | /*ref*/Bennett, L. L., Rojas, S. & Seefeldt, T. (2012). Role of Antioxidants in the Prevention of Cancer. Journal of Experimental and Clinical Medicine, 4(4), 215-222. doi: 10.1016/j.jecm.2012.06.001 | |
dc.relation | /*ref*/Buddhan, S., Sivakumar, R., Dhandapani, N., Ganesan, B. & Anandan, R. (2007). Protective Effect of Detary Squalene Supplementation on Mitochondrial Function in Liver of Aged Rats. Prostaglandins Leukotrienes and Essential Fatty Acids, 76(6), 349-355. doi: 10.1016/j.plefa.2007.05.00 | |
dc.relation | /*ref*/Chang, A. S., Sherazi, S. T. H., Kandhro, A. A., Mahesar, S. A., Chang, F., Shah, S. N., Laghari, Z. H. & Panhwar, T. (2016). Characterization of Palm Fatty Acid Distillate of Different Oil Processing Industries of Pakistan. Journal of Oleo Science, 65(11), 897-901. doi:10.5650/jos.ess16073 | |
dc.relation | /*ref*/Chaves, G., Ligarreto-Moreno, G. A. & Cayon-Salinas, D. G. (2018). Physicochemical Characterization of Bunches from American Oil Palm (Elaeis oleifera H.B.K. Cortes) and their Hybrids with African Oil Palm (Elaeis guineensis Jacq.). Acta Agronómica, 67(1), 168-176. doi: 10.15446/acag.v67n1.62028 | |
dc.relation | /*ref*/Chew, C. L., Ab Karim, N. A., Kong, P. S., Tang, S. Y. & Chan, E.-S. (2021). A Sustainable In situ Treatment Method to Improve the Quality of Crude Palm Oil by Repurposing Treated Aerobic Liquor. Food and Bioprocess Technology. doi: 10.1007/s11947-021-02582-6 | |
dc.relation | /*ref*/Chew, S. C., Tan, C. H., Pui, L. P., Chong, P. N., Gunasekaran, B. & Lin, N. K. (2019). Encapsulation Technologies: A Tool for Functional Foods Development. International Journal of Innovative Technology and Exploring Engineering, 8(5s), 154-160. | |
dc.relation | /*ref*/Chinenye, C. (2020). Storage Oxidation Stability of Crude Palm Oil with some Traditional Nigerian Spices. IOSR Journal of Environmental Science, 14(August), 1-09. doi: 10.9790/2402-1408020109 | |
dc.relation | /*ref*/Code of Practice for the Reduction of 3-monochloropropane-1,2- diol esters (3-MCPDEs) and Glycidyl Esters (GEs) in Refined Oils and Food Products Made with Refined Oils, 6 (2019). Recuperado de https: www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B79-2019%252FCXC_079e.pdf | |
dc.relation | /*ref*/Dian, N. L. H. M., Hamid, R. A., Kanagaratnam, S., Isa, W. R. A., Hassim, N. A. M., Ismail, N. H., Omar, Z. & Sahri, M. M. (2017). Palm oil and Palm Kernel Oil: Versatile Ingredients for Food Applications. Journal of Oil Palm Research, 29(4), 487-511. doi: 10.21894/jopr.2017.00014 | |
dc.relation | /*ref*/Dutta, A. & Dutta, S. K. (2003). Vitamin E and its Role in the Prevention of Atherosclerosis and Carcinogenesis: A review. Journal of the American College of Nutrition, 22(4), 258-268. doi: 10.1080/07315724.2003.10719302 | |
dc.relation | /*ref*/Estiasih, T. & Ahmadi, K. (2018). Bioactive Compounds from Palm Fatty Acid Distillate and Crude Palm Oil. IOP Conference Series: Earth and Environmental Science, 131(1). doi: 10.1088/1755-1315/131/1/012016 | |
dc.relation | /*ref*/FAO, OPS, WFP & UNICEF. (2019). Panorama de la seguridad alimentaria y nutricional en América Latina y el Caribe 2019. Hacia entornos alimentarios más saludables que hagan frente a todas las formas de malnutrición. En Panorama de la seguridad alimentaria y nutricional en América Latina y el Caribe 2019. | |
dc.relation | /*ref*/Fedepalma. (2019). Anuario estadístico 2019. Principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo. | |
dc.relation | /*ref*/Fedepalma. (2020). Anuario estadístico 2020. Principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo. 238. | |
dc.relation | /*ref*/Gesteiro, E., Galera-Gordo, J. & González-Gross, M. (2018). Palm Oil and Cardiovascular Health: Considerations to Evaluate the Literature Critically. Nutrición Hospitalaria, 35(5), 1229-1242. doi: 10.20960/nh.1970 | |
dc.relation | /*ref*/Gonzalez-Díaz, A., García-Núñez, J. A. & Dueñas-Solarte, J. (2019). Índice de yodo: un parámetro determinante para establecer el nivel de mezcla entre aceites de palma crudos (APC) provenientes de cultivares DxP e híbridos OxG--“CxL” (No. 0123-8353 Índice). | |
dc.relation | /*ref*/Goon, J. A., Nor Azman, N. H. E., Abdul Ghani, S. M., Hamid, Z. & Wan Ngah, W. Z. (2017). Comparing Palm Oil Tocotrienol Rich Fraction with α-tocopherol Supplementation on Oxidative Stress in Healthy Older Adults. Clinical Nutrition ESPEN, 21, 1-12. doi: 10.1016/j.clnesp.2017.07.004 | |
dc.relation | /*ref*/Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B. & Wani, A. A. (2015). Chemistry, Encapsulation, and Health Benefits of β-carotene-A review. Cogent Food & Agriculture, 1(1), 1-12. doi: 10.1080/23311932.2015.1018696 | |
dc.relation | /*ref*/Han, N. M. & Choo, M. Y. (2015). Enhancing the Separation and Purification Efficiency of Palm Oil Carotenes Using Supercritical Fluid Chromatography. Journal of Oil Palm Research, 27(4), 387-392. | |
dc.relation | /*ref*/Hanel, A. & Carlberg, C. (2020). Vitamin D and Evolution: Pharmacologic Implications. Biochemical Pharmacology, 173. doi: 10.1016/j.bcp.2019.07.024 | |
dc.relation | /*ref*/Hew, K. S., Asis, A. J., Tan, T. B., Yusoff, M. M., Lai, O. M., Nehdi, I. A. & Tan, C. P. (2020). Revising Degumming and Bleaching Processes of Palm Oil Refining for the Mitigation of 3-monochloropropane-1,2-diol Esters (3-MCPDE) and Glycidyl Esters (GE) Contents in Refined Palm Oil. Food Chemistry, 307, 125545. doi: 10.1016/j.foodchem.2019.125545 | |
dc.relation | /*ref*/Karmowski, J., Hintze, V., Kschonsek, J., Killenberg, M. & Böhm, V. (2015). Antioxidant Activities of Tocopherols/tocotrienols and Lipophilic Antioxidant Capacity of Wheat, Vegetable Oils, Milk and Milk Cream by Using Photochemiluminescence. Food Chemistry, 175, 593-600. doi: 10.1016/j.foodchem.2014.12.010 | |
dc.relation | /*ref*/Koufaki, M. (2016). Vitamin E Derivatives: A patent review (2010 - 2015). Expert Opinion on Therapeutic Patents, 26(1), 35-47. doi: 10.1517/13543776.2016.1106476 | |
dc.relation | /*ref*/Koushki, M., Nahidi, M. & Cheraghali, F. (2015). Physico-Chemical Properties, Fatty Acid Profile and Nutrition in Palm Oil Mohammadreza. Journal of Paramedical Sciences (JPS), 6(3), 117-134. doi: 10.22037/jps.v6i3.9772 | |
dc.relation | /*ref*/Kushairi, A., Ong-Abdullah, M., Nambiappan, B., Hishamuddin, E., Bidin, M. N. I. Z., Ghazali, R., Subramaniam, V., Sundram, S. & Parveez, G. K. A. (2019). Oil Palm Economic Performance in Malaysia and R&D Progress in 2018. Journal of Oil Palm Research, 31(2), 165-194. doi: 10.21894/jopr.2019.0026 | |
dc.relation | /*ref*/Liochev, S. I. (2013). Reactive Oxygen Species and the Free Radical Theory of Aging. Free Radical Biology and Medicine, 60, 1-4. doi: 10.1016/j.freeradbiomed.2013.02.011 | |
dc.relation | /*ref*/Prasanth Kumar, P. K. & Gopala Krishna, A. G. (2014). Physico-chemical Characteristics and Nutraceutical Distribution of Crude Palm Oil and its Fractions. Grasas y Aceites, 65(2). doi: 10.3989/gya.097413 | |
dc.relation | /*ref*/Qian, C., Decker, E. A., Xiao, H. & McClements, D. J. (2012). Physical and Chemical Stability of β-carotene-enriched Nanoemulsions: Influence of pH, Ionic Strength, Temperature, and Emulsifier type. Food Chemistry, 132(3), 1221-1229. doi: 10.1016/j.foodchem.2011.11.091 | |
dc.relation | /*ref*/Ramírez, O. (2004). Híbrido de la palma: una alternativa a la soya. Revista Palmas, 25 (Especial Conferencia Internacional, Tomo I, 25), 295-300. | |
dc.relation | /*ref*/Ribeiro, D., Freitas, M., Silva, A. M. S., Carvalho, F. & Fernandes, E. (2018). Antioxidant and Pro-oxidant Activities of Carotenoids and their Oxidation Products. Food and Chemical Toxicology, 120, 681-699. doi: 10.1016/j.fct.2018.07.060 | |
dc.relation | /*ref*/Rincón-Miranda, S. M., Hormaza, P., Moreno, L., Prada, F., Portillo, D., García, J. A. & Romero, H. M. (2013). Use of Phenological Stages of the Fruits and Physicochemical Characteristics of the Oil to Determine the Optimal Harvest Time of Oil Palm Interspecific OxG Hybrid Fruits. Industrial Crops and Products, 49, 204-210. doi: 10.1016/j.indcrop.2013.04.035 | |
dc.relation | /*ref*/Rincón Miranda, S. M. & Martínez Cárdenas, D. M. (2009). An Analysis of the Properties of Oil Palm in the Development of the its Industry. Revista Palmas, 30(2), 11-24. | |
dc.relation | /*ref*/Rodríguez, J. C., Gómez, D., Pacetti, D., Núnnez, O., Gagliardi, R., Frega, N. G., Ojeda, M. L., Loizzo, M. R., Tundis, R. & Lucci, P. (2016). Effects of the Fruit Ripening Stage on Antioxidant Capacity, Total Phenolics, and Polyphenolic Composition of Crude Palm Oil from Interspecific Hybrid Elaeis oleifera × Elaeis guineensis. Journal of Agricultural and Food Chemistry, 64(4), 852-859. doi: 10.1021/acs.jafc.5b04990 | |
dc.relation | /*ref*/Rubin, L. P., Ross, A. C., Stephensen, C. B., Bohn, T. & Tanumihardjo, S. A. (2017). Metabolic Effects of Inflammation on Vitamin A and Carotenoids in Humans and Animal Models. Advances in Nutrition: An International Review Journal, 8(2), 197-212. doi: 10.3945/ an.116.014167 | |
dc.relation | /*ref*/Sampaio, K. A., Ayala, J. V., Van Hoed, V., Monteiro, S., Ceriani, R., Verhé, R. & Meirelles, A. J. A. (2017). Impact of Crude Oil Quality on the Refining Conditions and Composition of Nutraceuticals in Refined Palm Oil. Journal of Food Science, 82(8), 1842-1850. doi: 10.1111/1750-3841.13805 | |
dc.relation | /*ref*/Santiago, J. K., Silva, W. C., Capristo, M. F., Ferreira, M. C., Ferrari, R. A., Vicente, E., Meirelles, A. J. A., Arisseto, A. P. & Sampaio, K. A. (2021). Organic, Conventional and Sustainable Palm Oil (RSPO): Formation of 2- and 3-MCPD Esters and Glycidyl Esters and Influence of Aqueous Washing on their Reduction. Food Research International, 140, 109998. doi: 10.1016/j.foodres.2020.109998 | |
dc.relation | /*ref*/Simpson, S. J., Le Couteur, D. G., Raubenheimer, D., Solon-Biet, S. M., Cooney, G. J., Cogger, V. C. & Fontana, L. (2017). Dietary Protein, Aging and Nutritional Geometry. Ageing Research Reviews, 39, 78-86. doi: 10.1016/j.arr.2017.03.001 | |
dc.relation | /*ref*/Šošić-Jurjević, B., Lütjohann, D., Jarić, I., Miler, M., Vojnović Milutinović, D., Filipović, B., Ajdžanović, V., Renko, K., Wirth, E. K., Janković, S., Kӧhrle, J. & Milošević, V. (2017). Effects of Age and Soybean Isoflavones on Hepatic Cholesterol Metabolism and Thyroid Hormone Availability in Acyclic Female Rats. Experimental Gerontology, 92(October), 74-81. doi: 10.1016/j.exger.2017.03.016 | |
dc.relation | /*ref*/Springmann, M., Wiebe, K., Mason-D’Croz, D., Sulser, T. B., Rayner, M. & Scarborough, P. (2018). Health and Nutritional Aspects of Sustainable Diet Strategies and their Association with Environmental Impacts: a Global Modelling Analysis with Country-Level Detail. The Lancet Planetary Health, 2(10), e451-e461. doi: 10.1016/S2542-5196(18)30206-7 | |
dc.relation | /*ref*/Taylor, P., Craft, B. D., Nagy, K., Sandoz, L. & Destaillats, F. (2011). Food Additives & Contaminants: Part A Factors Impacting the formation of Monochloropropanediol (MCPD) Fatty Acid Diesters During Palm ( Elaeis guineensis ) oil production. April 2013, 37-41. | |
dc.relation | /*ref*/Uddin, M. S., Sarker, M. Z. I., Ferdosh, S., Akanda, M. J. H., Easmin, M. S., Bt Shamsudin, S. H. & Yunus, K. Bin. (2015). Phytosterols and their Extraction from Various Plant Matrices Using Supercritical Carbon Dioxide. A review. Journal of the Science of Food and Agriculture, 95(7), 1385-1394. doi: 10.1002/jsfa.6833 | |
dc.relation | /*ref*/Velisek, J., Zelinkova, Z., Novotny, O., Schurek, J. & Hajslova, J. (2011). Occurrence of 3-MCPD Fatty Acid Esters in Human Breast Milk. Food Additives & Contaminants: Part A. Vicentini, A., Liberatore, L. & Mastrocola, D. (2016). Functional Foods: Trends and Development. Italian Journal of Food Science, 28, 338-352. | |
dc.relation | /*ref*/Vispute, P., & Dabhade, S. (2018). Refining of palm oil: A Review on Palm Oil Refining Process, 3-MCPD Esters in Refined Palm Oil, and Possible Reduction Tactics for 3-MCPD Esters, 11(149), 149-154. doi: 10.15740/HAS/IJAE/11.Sp | |
dc.relation | /*ref*/Zerbinati, C. & Iuliano, L. (2017). Cholesterol and Related Sterols Autoxidation. Free Radical Biology and Medicine, 111, 151-155. doi: 10.1016/j.freeradbiomed.2017.04.013 | |
dc.relation | /*ref*/Zhou, J., Ma, Y., Jia, Y., Pang, M., Cheng, G. & Cai, S. (2019). Phenolic Profiles, Antioxidant Activities and Cytoprotective Effects of Different Phenolic Fractions from Oil Palm (Elaeis guineensis Jacq.) Fruits Treated by Ultra-high Pressure. Food Chemistry, 288 (November 2018), 68-77. doi: 10.1016/j.foodchem.2019.03.002 | |
dc.relation | /*ref*/Zou, Y., Jiang, Y., Yang, T., Hu, P. & Xu, X. (2012). Minor Constituents of Palm Oil: Characterization, Processing, and Application. En Palm Oil: Production, Processing, | |
dc.relation | /*ref*/Characterization, and Uses. AOCS Press. doi: 10.1016/B978-0-9818936-9-3.50019-8 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0 | es-ES |
dc.source | Palmas; Vol. 42 Núm. 1 (2021); 65-80 | es-ES |
dc.source | 2744-8266 | |
dc.source | 0121-2923 | |
dc.subject | Calidad del aceite de palma crudo | es-ES |
dc.subject | Composición del APC | es-ES |
dc.subject | Antioxidantes | es-ES |
dc.subject | Compuestos contaminantes | es-ES |
dc.title | Palm Oil Quality as a New Challenge for Palm Cultivation Worldwide | en-US |
dc.title | La calidad del aceite de palma como un nuevo reto para la palmicultura mundial | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |