Show simple item record

dc.creatorBaena S., María A.
dc.creatorGarcía Núñez, Jesús A.
dc.creatorGonzález D., Alexis
dc.creatorMondragón, Alexandra
dc.creatorCaballero B. , Kennyher
dc.date2021-06-01
dc.identifierhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/13450
dc.descriptionProducers of crude palm oil (CPO) worldwide have seen the need to adapt to the latest quality requirements of various markets and the regulatory requirements of the countries where this oil is marketed. Buyers are demanding more and new quality parameters when negotiating CPO, a raw material that is essential to produce different foods. Today, heavy metals, traces of aromatic and aliphatic hydrocarbons, chloropropanols, and chlorine and phosphorus compounds are most frequently monitored during the evaluation of the properties and characteristics of crude and refined palm oil for marketing. In addition to these quality parameters, other commonly used parameters, such as the free fatty acids (FFA) content, the deterioration o bleachability index (DOBI), and humidity and impurities, should also be considered. Currently, extensive work is being carried out in the search for good cultivation, processing and refining practices that guarantee the reduction of CPO contaminant compounds and pollutant precursors for refined oils. On the other hand, CPO has many minorcompounds with high nutritional potential and the capacity to generate high value-added elements that have not been adequately utilized. This article aims to present some of the characteristics that contribute nutritional value to palm oil and the new challenges the oil palm sector faces regarding the presence and reduction of pollutant precursors and pollutants formed during palm oil production. Likewise, it aims to highlight the practices that have been successful in mitigating these compounds.en-US
dc.descriptionA nivel mundial, los productores de aceite de palma crudo (APC) se han visto en la necesidad de adaptarse a las más recientes exigencias de calidad de los distintos mercados, al igual que a los requisitos normativos pedidos por los países en donde se comercializa este tipo de aceite. Actualmente, más y nuevos parámetros de calidad conforman el grupo de requerimientos exigidos por los compradores durante las negociaciones del APC, materia prim a indispensable para la producción de distintos alimentos. Hoy por hoy, los metales pesados, trazas de hidrocarburos aromáticos y alifáticos, cloropropanoles y compuestos de cloro y fósforo son monitoreados con mayor frecuencia durante la evaluación de las propiedades y características del aceite de palma crudo y refinado para su comercialización. Adicional a estos parámetros de calidad, es necesario tener en cuenta los que comúnmente se utilizan como el contenido de ácidos grasos libres (AGL), el índice de deterioro de la blanqueabilidad (DOBI) y la humedad e impurezas. En la actualidad, se trabaja de manera exhaustiva en la búsqueda de buenas prácticas de cultivo, procesamiento y refinación que garanticen la reducción de compuestos contaminantes del APC y de los precursores de contaminantes para los aceites refinados. De otro lado, el APC tiene una gran cantidad de compuestos menores con alto potencial nutricional y la capacidadde generar elementos de alto valor agregado que no han sido debidamente utilizados. El objetivo del presente artículo es dar a conocer parte de las características que atribuyen valor nutricional al aceite de palma y los nuevos retos que enfrenta el sector palmero en lo referente a la presencia y disminución de precursores de contaminantes y de contaminantes formados durante la producción del aceite de palma, asimismo, pretende resaltar las prácticas que han dado buenos resultados en la mitigación de estos compuestos.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.languagespa
dc.publisherFedepalmaes-ES
dc.relationhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/13450/13222
dc.relationhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/13450/13731
dc.relation/*ref*/AECOSAN. Agencia Española de Consumo y Seguridad Alimentaria y Nutrición. (2016). Aceites Minerales, 4-7. Recuperado de http://americanoils.co/es/productos/aceitesminerales-usp.html
dc.relation/*ref*/Barrera, C., Hamner, H. C., Perrine, C. G. & Scanlon, K. S. (2014). National Health and Nutrition Examination Survey. Encyclopedia of Human Services and Diversity, 118(3), 464-470. doi: 10.4135/9781483346663.n401
dc.relation/*ref*/Bennett, L. L., Rojas, S. & Seefeldt, T. (2012). Role of Antioxidants in the Prevention of Cancer. Journal of Experimental and Clinical Medicine, 4(4), 215-222. doi: 10.1016/j.jecm.2012.06.001
dc.relation/*ref*/Buddhan, S., Sivakumar, R., Dhandapani, N., Ganesan, B. & Anandan, R. (2007). Protective Effect of Detary Squalene Supplementation on Mitochondrial Function in Liver of Aged Rats. Prostaglandins Leukotrienes and Essential Fatty Acids, 76(6), 349-355. doi: 10.1016/j.plefa.2007.05.00
dc.relation/*ref*/Chang, A. S., Sherazi, S. T. H., Kandhro, A. A., Mahesar, S. A., Chang, F., Shah, S. N., Laghari, Z. H. & Panhwar, T. (2016). Characterization of Palm Fatty Acid Distillate of Different Oil Processing Industries of Pakistan. Journal of Oleo Science, 65(11), 897-901. doi:10.5650/jos.ess16073
dc.relation/*ref*/Chaves, G., Ligarreto-Moreno, G. A. & Cayon-Salinas, D. G. (2018). Physicochemical Characterization of Bunches from American Oil Palm (Elaeis oleifera H.B.K. Cortes) and their Hybrids with African Oil Palm (Elaeis guineensis Jacq.). Acta Agronómica, 67(1), 168-176. doi: 10.15446/acag.v67n1.62028
dc.relation/*ref*/Chew, C. L., Ab Karim, N. A., Kong, P. S., Tang, S. Y. & Chan, E.-S. (2021). A Sustainable In situ Treatment Method to Improve the Quality of Crude Palm Oil by Repurposing Treated Aerobic Liquor. Food and Bioprocess Technology. doi: 10.1007/s11947-021-02582-6
dc.relation/*ref*/Chew, S. C., Tan, C. H., Pui, L. P., Chong, P. N., Gunasekaran, B. & Lin, N. K. (2019). Encapsulation Technologies: A Tool for Functional Foods Development. International Journal of Innovative Technology and Exploring Engineering, 8(5s), 154-160.
dc.relation/*ref*/Chinenye, C. (2020). Storage Oxidation Stability of Crude Palm Oil with some Traditional Nigerian Spices. IOSR Journal of Environmental Science, 14(August), 1-09. doi: 10.9790/2402-1408020109
dc.relation/*ref*/Code of Practice for the Reduction of 3-monochloropropane-1,2- diol esters (3-MCPDEs) and Glycidyl Esters (GEs) in Refined Oils and Food Products Made with Refined Oils, 6 (2019). Recuperado de https: www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B79-2019%252FCXC_079e.pdf
dc.relation/*ref*/Dian, N. L. H. M., Hamid, R. A., Kanagaratnam, S., Isa, W. R. A., Hassim, N. A. M., Ismail, N. H., Omar, Z. & Sahri, M. M. (2017). Palm oil and Palm Kernel Oil: Versatile Ingredients for Food Applications. Journal of Oil Palm Research, 29(4), 487-511. doi: 10.21894/jopr.2017.00014
dc.relation/*ref*/Dutta, A. & Dutta, S. K. (2003). Vitamin E and its Role in the Prevention of Atherosclerosis and Carcinogenesis: A review. Journal of the American College of Nutrition, 22(4), 258-268. doi: 10.1080/07315724.2003.10719302
dc.relation/*ref*/Estiasih, T. & Ahmadi, K. (2018). Bioactive Compounds from Palm Fatty Acid Distillate and Crude Palm Oil. IOP Conference Series: Earth and Environmental Science, 131(1). doi: 10.1088/1755-1315/131/1/012016
dc.relation/*ref*/FAO, OPS, WFP & UNICEF. (2019). Panorama de la seguridad alimentaria y nutricional en América Latina y el Caribe 2019. Hacia entornos alimentarios más saludables que hagan frente a todas las formas de malnutrición. En Panorama de la seguridad alimentaria y nutricional en América Latina y el Caribe 2019.
dc.relation/*ref*/Fedepalma. (2019). Anuario estadístico 2019. Principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo.
dc.relation/*ref*/Fedepalma. (2020). Anuario estadístico 2020. Principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo. 238.
dc.relation/*ref*/Gesteiro, E., Galera-Gordo, J. & González-Gross, M. (2018). Palm Oil and Cardiovascular Health: Considerations to Evaluate the Literature Critically. Nutrición Hospitalaria, 35(5), 1229-1242. doi: 10.20960/nh.1970
dc.relation/*ref*/Gonzalez-Díaz, A., García-Núñez, J. A. & Dueñas-Solarte, J. (2019). Índice de yodo: un parámetro determinante para establecer el nivel de mezcla entre aceites de palma crudos (APC) provenientes de cultivares DxP e híbridos OxG--“CxL” (No. 0123-8353 Índice).
dc.relation/*ref*/Goon, J. A., Nor Azman, N. H. E., Abdul Ghani, S. M., Hamid, Z. & Wan Ngah, W. Z. (2017). Comparing Palm Oil Tocotrienol Rich Fraction with α-tocopherol Supplementation on Oxidative Stress in Healthy Older Adults. Clinical Nutrition ESPEN, 21, 1-12. doi: 10.1016/j.clnesp.2017.07.004
dc.relation/*ref*/Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B. & Wani, A. A. (2015). Chemistry, Encapsulation, and Health Benefits of β-carotene-A review. Cogent Food & Agriculture, 1(1), 1-12. doi: 10.1080/23311932.2015.1018696
dc.relation/*ref*/Han, N. M. & Choo, M. Y. (2015). Enhancing the Separation and Purification Efficiency of Palm Oil Carotenes Using Supercritical Fluid Chromatography. Journal of Oil Palm Research, 27(4), 387-392.
dc.relation/*ref*/Hanel, A. & Carlberg, C. (2020). Vitamin D and Evolution: Pharmacologic Implications. Biochemical Pharmacology, 173. doi: 10.1016/j.bcp.2019.07.024
dc.relation/*ref*/Hew, K. S., Asis, A. J., Tan, T. B., Yusoff, M. M., Lai, O. M., Nehdi, I. A. & Tan, C. P. (2020). Revising Degumming and Bleaching Processes of Palm Oil Refining for the Mitigation of 3-monochloropropane-1,2-diol Esters (3-MCPDE) and Glycidyl Esters (GE) Contents in Refined Palm Oil. Food Chemistry, 307, 125545. doi: 10.1016/j.foodchem.2019.125545
dc.relation/*ref*/Karmowski, J., Hintze, V., Kschonsek, J., Killenberg, M. & Böhm, V. (2015). Antioxidant Activities of Tocopherols/tocotrienols and Lipophilic Antioxidant Capacity of Wheat, Vegetable Oils, Milk and Milk Cream by Using Photochemiluminescence. Food Chemistry, 175, 593-600. doi: 10.1016/j.foodchem.2014.12.010
dc.relation/*ref*/Koufaki, M. (2016). Vitamin E Derivatives: A patent review (2010 - 2015). Expert Opinion on Therapeutic Patents, 26(1), 35-47. doi: 10.1517/13543776.2016.1106476
dc.relation/*ref*/Koushki, M., Nahidi, M. & Cheraghali, F. (2015). Physico-Chemical Properties, Fatty Acid Profile and Nutrition in Palm Oil Mohammadreza. Journal of Paramedical Sciences (JPS), 6(3), 117-134. doi: 10.22037/jps.v6i3.9772
dc.relation/*ref*/Kushairi, A., Ong-Abdullah, M., Nambiappan, B., Hishamuddin, E., Bidin, M. N. I. Z., Ghazali, R., Subramaniam, V., Sundram, S. & Parveez, G. K. A. (2019). Oil Palm Economic Performance in Malaysia and R&D Progress in 2018. Journal of Oil Palm Research, 31(2), 165-194. doi: 10.21894/jopr.2019.0026
dc.relation/*ref*/Liochev, S. I. (2013). Reactive Oxygen Species and the Free Radical Theory of Aging. Free Radical Biology and Medicine, 60, 1-4. doi: 10.1016/j.freeradbiomed.2013.02.011
dc.relation/*ref*/Prasanth Kumar, P. K. & Gopala Krishna, A. G. (2014). Physico-chemical Characteristics and Nutraceutical Distribution of Crude Palm Oil and its Fractions. Grasas y Aceites, 65(2). doi: 10.3989/gya.097413
dc.relation/*ref*/Qian, C., Decker, E. A., Xiao, H. & McClements, D. J. (2012). Physical and Chemical Stability of β-carotene-enriched Nanoemulsions: Influence of pH, Ionic Strength, Temperature, and Emulsifier type. Food Chemistry, 132(3), 1221-1229. doi: 10.1016/j.foodchem.2011.11.091
dc.relation/*ref*/Ramírez, O. (2004). Híbrido de la palma: una alternativa a la soya. Revista Palmas, 25 (Especial Conferencia Internacional, Tomo I, 25), 295-300.
dc.relation/*ref*/Ribeiro, D., Freitas, M., Silva, A. M. S., Carvalho, F. & Fernandes, E. (2018). Antioxidant and Pro-oxidant Activities of Carotenoids and their Oxidation Products. Food and Chemical Toxicology, 120, 681-699. doi: 10.1016/j.fct.2018.07.060
dc.relation/*ref*/Rincón-Miranda, S. M., Hormaza, P., Moreno, L., Prada, F., Portillo, D., García, J. A. & Romero, H. M. (2013). Use of Phenological Stages of the Fruits and Physicochemical Characteristics of the Oil to Determine the Optimal Harvest Time of Oil Palm Interspecific OxG Hybrid Fruits. Industrial Crops and Products, 49, 204-210. doi: 10.1016/j.indcrop.2013.04.035
dc.relation/*ref*/Rincón Miranda, S. M. & Martínez Cárdenas, D. M. (2009). An Analysis of the Properties of Oil Palm in the Development of the its Industry. Revista Palmas, 30(2), 11-24.
dc.relation/*ref*/Rodríguez, J. C., Gómez, D., Pacetti, D., Núnnez, O., Gagliardi, R., Frega, N. G., Ojeda, M. L., Loizzo, M. R., Tundis, R. & Lucci, P. (2016). Effects of the Fruit Ripening Stage on Antioxidant Capacity, Total Phenolics, and Polyphenolic Composition of Crude Palm Oil from Interspecific Hybrid Elaeis oleifera × Elaeis guineensis. Journal of Agricultural and Food Chemistry, 64(4), 852-859. doi: 10.1021/acs.jafc.5b04990
dc.relation/*ref*/Rubin, L. P., Ross, A. C., Stephensen, C. B., Bohn, T. & Tanumihardjo, S. A. (2017). Metabolic Effects of Inflammation on Vitamin A and Carotenoids in Humans and Animal Models. Advances in Nutrition: An International Review Journal, 8(2), 197-212. doi: 10.3945/ an.116.014167
dc.relation/*ref*/Sampaio, K. A., Ayala, J. V., Van Hoed, V., Monteiro, S., Ceriani, R., Verhé, R. & Meirelles, A. J. A. (2017). Impact of Crude Oil Quality on the Refining Conditions and Composition of Nutraceuticals in Refined Palm Oil. Journal of Food Science, 82(8), 1842-1850. doi: 10.1111/1750-3841.13805
dc.relation/*ref*/Santiago, J. K., Silva, W. C., Capristo, M. F., Ferreira, M. C., Ferrari, R. A., Vicente, E., Meirelles, A. J. A., Arisseto, A. P. & Sampaio, K. A. (2021). Organic, Conventional and Sustainable Palm Oil (RSPO): Formation of 2- and 3-MCPD Esters and Glycidyl Esters and Influence of Aqueous Washing on their Reduction. Food Research International, 140, 109998. doi: 10.1016/j.foodres.2020.109998
dc.relation/*ref*/Simpson, S. J., Le Couteur, D. G., Raubenheimer, D., Solon-Biet, S. M., Cooney, G. J., Cogger, V. C. & Fontana, L. (2017). Dietary Protein, Aging and Nutritional Geometry. Ageing Research Reviews, 39, 78-86. doi: 10.1016/j.arr.2017.03.001
dc.relation/*ref*/Šošić-Jurjević, B., Lütjohann, D., Jarić, I., Miler, M., Vojnović Milutinović, D., Filipović, B., Ajdžanović, V., Renko, K., Wirth, E. K., Janković, S., Kӧhrle, J. & Milošević, V. (2017). Effects of Age and Soybean Isoflavones on Hepatic Cholesterol Metabolism and Thyroid Hormone Availability in Acyclic Female Rats. Experimental Gerontology, 92(October), 74-81. doi: 10.1016/j.exger.2017.03.016
dc.relation/*ref*/Springmann, M., Wiebe, K., Mason-D’Croz, D., Sulser, T. B., Rayner, M. & Scarborough, P. (2018). Health and Nutritional Aspects of Sustainable Diet Strategies and their Association with Environmental Impacts: a Global Modelling Analysis with Country-Level Detail. The Lancet Planetary Health, 2(10), e451-e461. doi: 10.1016/S2542-5196(18)30206-7
dc.relation/*ref*/Taylor, P., Craft, B. D., Nagy, K., Sandoz, L. & Destaillats, F. (2011). Food Additives & Contaminants: Part A Factors Impacting the formation of Monochloropropanediol (MCPD) Fatty Acid Diesters During Palm ( Elaeis guineensis ) oil production. April 2013, 37-41.
dc.relation/*ref*/Uddin, M. S., Sarker, M. Z. I., Ferdosh, S., Akanda, M. J. H., Easmin, M. S., Bt Shamsudin, S. H. & Yunus, K. Bin. (2015). Phytosterols and their Extraction from Various Plant Matrices Using Supercritical Carbon Dioxide. A review. Journal of the Science of Food and Agriculture, 95(7), 1385-1394. doi: 10.1002/jsfa.6833
dc.relation/*ref*/Velisek, J., Zelinkova, Z., Novotny, O., Schurek, J. & Hajslova, J. (2011). Occurrence of 3-MCPD Fatty Acid Esters in Human Breast Milk. Food Additives & Contaminants: Part A. Vicentini, A., Liberatore, L. & Mastrocola, D. (2016). Functional Foods: Trends and Development. Italian Journal of Food Science, 28, 338-352.
dc.relation/*ref*/Vispute, P., & Dabhade, S. (2018). Refining of palm oil: A Review on Palm Oil Refining Process, 3-MCPD Esters in Refined Palm Oil, and Possible Reduction Tactics for 3-MCPD Esters, 11(149), 149-154. doi: 10.15740/HAS/IJAE/11.Sp
dc.relation/*ref*/Zerbinati, C. & Iuliano, L. (2017). Cholesterol and Related Sterols Autoxidation. Free Radical Biology and Medicine, 111, 151-155. doi: 10.1016/j.freeradbiomed.2017.04.013
dc.relation/*ref*/Zhou, J., Ma, Y., Jia, Y., Pang, M., Cheng, G. & Cai, S. (2019). Phenolic Profiles, Antioxidant Activities and Cytoprotective Effects of Different Phenolic Fractions from Oil Palm (Elaeis guineensis Jacq.) Fruits Treated by Ultra-high Pressure. Food Chemistry, 288 (November 2018), 68-77. doi: 10.1016/j.foodchem.2019.03.002
dc.relation/*ref*/Zou, Y., Jiang, Y., Yang, T., Hu, P. & Xu, X. (2012). Minor Constituents of Palm Oil: Characterization, Processing, and Application. En Palm Oil: Production, Processing,
dc.relation/*ref*/Characterization, and Uses. AOCS Press. doi: 10.1016/B978-0-9818936-9-3.50019-8
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourcePalmas; Vol. 42 Núm. 1 (2021); 65-80es-ES
dc.source2744-8266
dc.source0121-2923
dc.subjectCalidad del aceite de palma crudoes-ES
dc.subjectComposición del APCes-ES
dc.subjectAntioxidanteses-ES
dc.subjectCompuestos contaminanteses-ES
dc.titlePalm Oil Quality as a New Challenge for Palm Cultivation Worldwideen-US
dc.titleLa calidad del aceite de palma como un nuevo reto para la palmicultura mundiales-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record