dc.creator | Arias A., Nolver A. | |
dc.date | 2021-06-01 | |
dc.identifier | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13453 | |
dc.description | Alterations in the climate associated with climate change and variability are a reality and impact agricultural activities. The changes generated in variables such as: temperature, the concentration of atmospheric CO2, the intensity and frequency of the rains, and the intensity of the winds, affect crop variables such as evapotranspiration, CO2 fixation and, ultimately, yields, as well, such as the availability of land for cultivation. Facing the challenges posed by these climatic phenomena implies the approach of multiple strategies. However, the efficient management of soil, nutrition and water in the crop, constitute three key factors that help mitigate the foreseeable negative impacts. It is then necessary: the implementation of soil protection measures such as plant covers, the increase in soil biodiversity, the use of growth-promoting microorganisms, fertilizer sources that increase efficiency, efficient cultivars in the use of nutrients and water, and measures that favor carbon sequestration such as the accompaniment of the greatest possible diversity of plants to cultivation andthe reduction in the use of agrochemicals that allow reducing the carbon footprint of crude palm oil production. In this article, we will do a review of the efficiencies necessary in terms of nutrition and water management in palm cultivation is carried out to reduce the risk associated with climate change and variability. | en-US |
dc.description | Las alteraciones en el clima asociadas con el cambio y la variabilidad climática son una realidad e impactan las actividades agrícolas. Los cambios generados en variables como: la temperatura, la concentración de CO2 atmosférico, la intensidad y frecuencia de las lluvias, y la de los vientos, afectan variables del cultivo como la evapotranspiración, la fijación de CO2 y, al final, los rendimientos, así como la disponibilidad de tierras para el cultivo. Enfrentar los retos que plantean estos fenómenos climáticos implica el abordaje de múltiples estrategias. Sin embargo, el manejo eficiente del suelo, la nutrición y el agua en el cultivo, se constituyen en tres factores clave que ayudan a mitigar los impactos negativos previsibles. Entonces, es necesario: el incremento de la biodiversidad del suelo, la implementación de medidas de protección del suelo como las coberturas vegetales, el uso de microorganismos promotores de crecimiento, fuentes fertilizantes que incrementen la eficiencia, cultivares eficientes en el uso de nutrientes y el agua, y medidas que favorezcan el secuestro de carbono como el acompañamiento de la mayor diversidad posible de plantas al cultivo y la reducción en el uso de agroquímicos que permitan disminuir la huella de carbono de la producción de aceite de palma crudo. En este artículo se realiza una revisión de las eficiencias necesarias en cuanto al manejo de la nutrición y elagua en el cultivo de la palma para disminuir el riesgo asociado con el cambio y la variabilidad climática. | es-ES |
dc.format | application/pdf | |
dc.format | text/xml | |
dc.language | spa | |
dc.publisher | Fedepalma | es-ES |
dc.relation | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13453/13192 | |
dc.relation | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13453/13732 | |
dc.relation | /*ref*/Aholoukpè, H. N. S., Amadji, G. L., Blavet, D., Chotte, J. L., Deleporte, P., Dubos, B., … Jourdan, C. (2016). Effet de la gestion des feuilles d’élagage du palmier à huile sur le stock de carbone et les propriétés physico-chimiques du sol dans les palmeraies villageoises du Bénin. Biotechnology, Agronomy and Society and Environment, 20(2), 171-182. | |
dc.relation | /*ref*/Álvarez, O. M., Ruíz, E., Mosquera-M., M. & Humberto-S, J. (2018). Evaluación económica de sistemas de riego para plantaciones de palma aceitera en la Zona Norte de Colombia TT. Palmas, 39(1), 69-85. Recuperado de https://publicaciones.fedepalma.org/index.php/palmas/article/view/12401 | |
dc.relation | /*ref*/Arias, N. A., Beltrán, J. A., Guerrero, J. M. & Sánchez, A. C. (2014). Tecnologías para el manejo de la Pudrición del cogollo (PC) de la palma de aceite validadas en las zonas palmeras de Colombia. Revista Palmas, 35(2), 39-52. Recuperado de http://publicaciones.fedepalma.org/index.php/palmas/article/view/10978 | |
dc.relation | /*ref*/Ariyanti, M., Mubarok, S. & Asbur, Y. (2017). Study of Asystasia gangetica (L.) T. Anderson as Cover Cop Against Soil Water Content in Mature Oil Palm Plantation. Journal of Agronomy, 16(4), 154-159. doi: 10.3923/ja.2017.154.159 | |
dc.relation | /*ref*/Asbur, Y., Purwaningrum, Y. & Ariyanti, M. (2018). Growth and nutrient balance of Asystasia gangetica ( L .) T . Anderson as Cover Crop for Mature Oil Palm (Elaeis guineensis Jacq.) Plantations. Chilean Journal of Agricultural Research, 78(December), 486-494. doi: 10.4067/S0718-58392018000400486 | |
dc.relation | /*ref*/Ashton-butt, A., Hood, A., Ashton-butt, A., Aryawan, A. A. K., Hood, A. S. C., Naim, M., … Snaddon, J. (2018). Understory Vegetation in Oil Palm Plantations Benefits Soil Biodiversity and Understory Vegetation in Oil Palm Plantations Benefits Soil Biodiversity and Decomposition Rates, (octubre 2019). doi: 10.3389/ffgc.2018.00010 | |
dc.relation | /*ref*/Beyer, R., Durán, A., Rademacher, T., Martin, P., Tayleur, C., Brooks, S., … Sanderson, F. (2020). The Environmental Impacts of Palm Oil and its Alternatives, 1-18. doi: | |
dc.relation | /*ref*/1101/2020.02.16.951301 | |
dc.relation | /*ref*/CAF. (2016). El Niño en América Latina: ¿Cómo mitigar sus efectos en los sectores productivos? | |
dc.relation | /*ref*/Caliman, J. P. & Southworth, A. (1998). Effect of Drought and Haze on the Performance of Oil Palm. International Oil Palm Conference, (I). Recuperado de http://agritrop.cirad.fr/401034/1/ID401034.pdf | |
dc.relation | /*ref*/Carr, M. K. V. (2014). The Water Relations and Irrigation Requirements of Cocoa (Theobroma Cacao L). A Review. Experimental Agriculture, 50(01), 1-23. doi: 10.1017/S0014479713000288 | |
dc.relation | /*ref*/de Silva, J., Tuwei, G. & Zhao, F. J. (2016). Environmental Factors Influencing Aluminium Accumulation in Tea (Camellia sinensis L.). Plant and Soil, 400(1-2), 223-230. doi: 10.1007/s11104-015-2729-5 | |
dc.relation | /*ref*/Dewi, R. A. S., Indriyati, L. T., Sahari, B. & Sabiham, S. (2017). Loss of Soil Organic Matter, Lignocellulose and Microbial Population in Oil Palm Plantations Located at Different Slopes. Journal of Tropical Soils, 22(3), 175-181. doi: 10.5400/jts.2017.v22i3.175-181 | |
dc.relation | /*ref*/Eycott, A. E., Advento, A. D., Waters, H. S., Luke, S. H., Aryawan, A. A. K., Hood, A. S., … Turner, E. C. (2019). Resilience of Ecological Functions to Drought in an Oil Palm Agroecosystem. Environmental Research Communications, 1(10), 101004. doi: 10.1088/2515-7620/ab48da | |
dc.relation | /*ref*/Formaglio, G., Veldkamp, E., Duan, X., Tjoa, A. & Corre, M. (2020). Herbicide Weed Control Increases Nutrient Leaching as Compared to Mechanical Weeding in a Large-scale Oil Palm Plantation. Biogeosciences Discussions, (junio), 1-53. doi: 10.5194/bg-2020-153 | |
dc.relation | /*ref*/Gafur, M. A. & Putra, E. T. S. (2019). Effect of Drought Stress in Physiological Oil Palm Seedling (Elaeis guineensis Jacq.) Using Calcium Application. Asian Journal of Biological Sciences, 12(3), 550-556. doi: 10.3923/ajbs.2019.550.556 | |
dc.relation | /*ref*/Giller, K. E., Woittiez, L. S., van Wijk, M. T., Slingerland, M. & van Noordwijk, M. (2017). Yield Gaps in Oil Palm: A Quantitative Review of Contributing Factors. European Journal of Agronomy, 83, 57-77. doi: 10.1016/j.eja.2016.11.002 | |
dc.relation | /*ref*/Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R. & Ewers, R. M. (2015). The Relationship between Leaf Area Index and Microclimate in Tropical Forest and Oil Palm Plantation: Forest Disturbance Drives Changes in Microclimate. Agricultural and Forest Meteorology, 201(March), 187-195. doi: 10.1016/j.agrformet.2014.11.010 | |
dc.relation | /*ref*/Henson, I. E., Harun, M. H. & Chang, K. C. (2008). Some Observations on the Effects of High Water Tables and Flooding on Oil Palm, and a Preliminary Model of Oil Palm Water Balance and Use in the Presence of a High Water Table. Oil Palm Bulletin, 56(May), 14-22. | |
dc.relation | /*ref*/Hong Xing, C., Cheng Xu, S., Hong Bo, S. & Xin Tao, L. (2016). Effects of Low Temperature and Drought on the Physiological and Growth Changes in Oil Palm Seedlings. African Journal of Biotechnology, 10(14), 2630-2637. doi: 10.5897/ajb10.1272 | |
dc.relation | /*ref*/Husni, M. H. A., Bah, A., Ahmed, O. H., Syed Omar, S. R., Teh, C. B. S. & Rafii, M. Y. (2014). Reducing Runoff Loss of Applied Nutrients in Oil Palm Cultivation Using Controlled-Release Fertilizers. Advances in Agriculture, 2014(Diciembre), 1-9. doi: 10.1155/2014/285387 | |
dc.relation | /*ref*/Ideam. (2015). Nuevos escenarios para el cambio climático para Colombia 2011-2100. | |
dc.relation | /*ref*/Ideam, 13. Recuperado de http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WGI_AR5_TS_FAQ_ES.pdf%5Cn%5Cnhttp://www.enteregionsur.com.ar/varios/user_files/ | |
dc.relation | /*ref*/multimedia_1328640503.doc%5Cnhttp://www.fao.org/docrep/018/i3325e/i3325e00.htm%5Cnhttp://revistaing.uniandes.edu.co/pdf/26a9.pdf%5Cnhttp: | |
dc.relation | /*ref*/Jamaluddin, U. A., Lim, C. S. & Pereira, J. J. (2018). Implications of Climate Change on the Coastal Zone of Kuala Selangor, Malaysia. Bulletin of the Geological Society of Malaysia, 66(Febrero 2019), 107-119. doi: 10.7186/bgsm66201814 | |
dc.relation | /*ref*/Jazayeri, S. M., Rivera, Y. D., Camperos-Reyes, J. E. & Romero, H. M. (2015). Physiological Effects of Water Deficit on Two Oil Palm (Elaeis guineensis Jacq.) Genotypes. Agronomía Colombiana, 33(2), 164-173. doi: 10.15446/agron.colomb.v33n2.49846 | |
dc.relation | /*ref*/Kananam, W., Suksaroj, T. T. & Suksaroj, C. (2011). Biochemical Changes during Oil Palm (Elaeis guineensis) Empty Fruit Bunches Composting with Decanter Sludge and Chicken Manure. ScienceAsia, 37(1), 17-23. doi: 10.2306/scienceasia1513-1874.2011.37.017 | |
dc.relation | /*ref*/Khasanah, N., van Noordwijk, M., Ningsih, H. & Rahayu, S. (2015). Carbon Neutral? No Change in Mineral Soil Carbon Stock Under Oil Palm Plantations Derived from Forest or non-forest in Indonesia. Agriculture, Ecosystems and Environment, 211, 195-206. doi: 10.1016/j.agee.2015.06.009 | |
dc.relation | /*ref*/Kospa, D., Lulofs, K. & Asdak, C. (2017). Estimating Water Footprint of Palm Oil Production in PTP Mitra Ogan. International Journal of Advanced Engineering Information Technology, 7(6), 2115-2121. | |
dc.relation | /*ref*/Landis, T. D. & Dumroese, R. K. (2009). Using Polymer-coated Controlled-release Fertilizers in the Nursery and After Outplanting. Forest Nursery Notes, (C), 5-12. | |
dc.relation | /*ref*/Lubis, M. E. S., Harahap, I. Y., Hidayat, T. C., Pangaribua, Y., Sutarta, E. S., Rahman, Z. A., … Hanafi, M. M. (2014). Changes in Water Table Depth in an Oil Palm Plantation and its Surrounding Regions in Sumatra, Indonesia. Journal of Agronomy. doi: 10.3923/ja.2014.140.146 | |
dc.relation | /*ref*/Madzen, A. A. & Choy, L. K. (2017). Respons fenologi tumbuhan terhadap taburan hujan di johor menggunakan data indeks tumbuhan satelit MODIS-Aqua. Sains Malaysiana, 46(3), 421-428. doi: 10.17576/jsm-2017-4603-09 | |
dc.relation | /*ref*/Mangena, P. (2018). Water Stress: Morphological and Anatomical Changes in Soybean (Glycine max L.) Plants. Plant, Abiotic Stress and Responses to Climate Change, (mayo). doi: 10.5772/intechopen.72899 | |
dc.relation | /*ref*/Mejía, J. (2000). Consumo de agua por la palma de aceite y efectos del riego sobre la producción de racimos, una revisión de literatura. Revista Palmas, 21(1), 51-58. Recuperado de http://publicaciones.fedepalma.org/index.php/palmas/article/view/726/726 | |
dc.relation | /*ref*/Morel, M. a., Braña, V. & Castro-Sowinski, S. (2012). Legume Crops, Importance and Use of Bacterial Inoculation to Increase Production. Crop Plant, 217-240. doi: 10.5772/37413. | |
dc.relation | /*ref*/Mosquera, M. & Ruiz, E. (2016). Costos de producción de la agroindustria de la palma de aceite en Colombia en 2014, (Marzo). | |
dc.relation | /*ref*/Murtilaksono, K., Ariyanti, M., Asbur, Y., Siregar, H. H., Sutarta, E. S., Yanya, S., … Yusuf, M. (2018). Surface Runoff and Soil Erosion in Oil Palm Plantation of Management Unit of Rejosari, PT Perkebunan Nusantara VII. Conf. Series: Earth and Environmental Science, 0-5. doi: 10.1088/1755-1315/196/1/012002 | |
dc.relation | /*ref*/Najihah, T. S., Ibrahim, M. H., Zain, N. A. M., Nulit, R. & Wahab, P. E. M. (2020). Activity of the Oil Palm Seedlings Exposed to a Different Rate of Potassium Fertilizer under Water Stress Sondition. AIMS Environmental Science, 7(1), 46-68. doi: 10.3934/environsci.2020004 | |
dc.relation | /*ref*/Oettli, P., Behera, S. K. & Yamagata, T. (2018). Climate Based Predictability of Oil Palm Tree Yield in Malaysia. Scientific Reports, 8(1), 1-13. doi: 10.1038/s41598-018-20298-0 | |
dc.relation | /*ref*/Ollivier, J., Flori, A., Cochard, B., Amblard, P., Turnbull, N., Syahputra, I., … Gasselin, D. T. (2017). Genetic Variation in Nutrient Uptake and Nutrient Use Efficiency of Oil Palm. Journal of Plant Nutrition, 40(4), 558-573. doi: 10.1080/01904167.2016.1262415 | |
dc.relation | /*ref*/Othman, H., Mohammed, A. T., Harun, M. H., Darus, F. M. & Mos, M. (2010). Best Management Practices for Oil Palm Planting on Peat: Optimum Groundwater Table. MPOB Information Series. Recuperado de http://palmoilis.mpob.gov.my/publications/TOT/TT-472.pdf | |
dc.relation | /*ref*/Pardon, L., Ian Huth, N., Netelenbos Nelson, P., Banabas, M., Gabrielle, B. & Bessou, C. (2017). Yield and Nitrogen Losses in Oil Palm Plantations: Main Drivers and Management Tradeoffs Determined Using Simulation. Field Crops Research, 210(mayo), 20-32. doi: 10.1016/j.fcr.2017.05.016 | |
dc.relation | /*ref*/Pontigo, S., Ribera, A., Gianfreda, L., de la Luz Mora, M., Nikolic, M. & Cartes, P. (2015). Silicon in Vascular Plants: Uptake, Transport and its Influence on Mineral Stress under Acidic Conditions. Planta, 242(1), 23-37. doi: 10.1007/s00425-015-2333-1 | |
dc.relation | /*ref*/Rahim, K. a. (2002). Biofertilizers in Malaysian Agriculture: Perception, Demand and Promotion. Country Report of Malaysia, 1-6. Recuperado de http://www.fnca.mext.go.jp/english/bf/country_img/malaysia.pdf | |
dc.relation | /*ref*/Rhebergen, T. (2012). Analysis of Implementation of Best Management Practices in Oil Palm Plantations in Indonesia. Wageningen Universiteit. doi: 10.1016/j.still.2014.08.005 | |
dc.relation | /*ref*/Rhebergen, T., Fairhurst, T., Whitbread, A. & Giller, K. E. (2018). Yield Gap Analysis and Entry Points for Improving Productivity on Large Oil Palm Plantations and Smallholder Farms in Ghana. Agricultural Systems, 165(febrero), 14-25. doi: 10.1016/j.agsy.2018.05.012 | |
dc.relation | /*ref*/Rhebergen, T., Fairhurst, T., Giller, K. E. & Zingore, S. (2019). The Influence of Water and Nutrient Management on Oil Palm Yield Trends on a Large-scale Plantation in Ghana. Agricultural Water Management, 221 (noviembre), 377-387. doi: 10.1016/j.agwat.2019.05.003 | |
dc.relation | /*ref*/Rivera, Y., Rodríguez, D. & Romero, H. (2017). Huella de carbono de la producción de racimos de fruta fresca de palma de aceite en Colombia . Recuperado de http://web.fedepalma.org/sites/default/files/files/Cenipalma/posteres-rt-nacional/YRivera__Huella_de_carbono_de_la_produccion_de_racimos_de_fruta_fresca_RTN_2017_.pdf?fbclid=IwAR12ZbhbhJZHqg9TlYFMBLcmAapZYVLwfgeUc- | |
dc.relation | /*ref*/gjdYynQV3f01Oig-aDGs | |
dc.relation | /*ref*/Rivera, Y., Moreno, A. & Romero, H. (2013). Biochemical and Physiological Characterization of Oil Palm Interspecific Hybrids (Elaeis oleifera x Elaeis guineensis) Grown in Hydroponics. Acta Biológica Colombiana, 18(3), 465-472. | |
dc.relation | /*ref*/Russell, R. & Paterson, M. (2020). Depletion of Indonesian Oil Palm Plantations Implied from Modeling Oil Palm Mortality and Ganoderma boninense. Rot under Future Climate, 7(marzo), 366-379. doi: https://doi.org/10.3934/environsci.2020024 | |
dc.relation | /*ref*/Safitri, L., Hermantoro, H., Purboseno, S., Kautsar, V., Saptomo, S. K. & Kurniawan, A. (2018). Water Footprint and Crop Water Usage of Oil Palm (Eleasis guineensis) in Central Kalimantan: Environmental Sustainability Indicators for Different Crop Age and Soil Conditions. Water (Switzerland), 11(1). doi: 10.3390/w11010035 | |
dc.relation | /*ref*/Salmiyati, heryansyah, A., Idayu, I. & Supriyanto, E. (2014). Oil Palm Plantations Management Effects on Productivity Fresh Fruit Bunch (FFB). APCBEE Procedia, 8(Caas 2013), 282-286. doi: 10.1016/j.apcbee.2014.03.041 | |
dc.relation | /*ref*/Samedani, B., Juraimi, A. S., Anwar, M. P., Rafii, M. Y., Awadz, S. A. S. & Anuar, A. R. (2012). Competitive Ability of Some Cover Crop Species Against Asystasia gangetica and Pennisetum polystachion. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 62(7), 571-582. doi: 10.1080/09064710.2012.677855 | |
dc.relation | /*ref*/Savilaakso, S., García, C., García-Ulloa, J., Ghazoul, J., Groom, M., Guariguata, M. R., …Zrust, M. (2014). Systematic Review of Effects on Biodiversity from Oil Palm Production. Environmental Evidence, 3(1). doi: 10.1186/2047-2382-3-4 | |
dc.relation | /*ref*/Shanmuganathan, S. & Narayanan, A. (2012). Modelling the Climate Change Effects on Malaysia’s Oil Palm Yield. 2012 IEEE Symposium on E-Learning, E-Management and E-Services, IS3e 2012, 71-76. doi: 10.1109/IS3e.2012.6414948 | |
dc.relation | /*ref*/Sicuia, O. A., Oancea, F., Constantinescu, F., Dinu, S. & Cornea, C. P. (2012). Bacillus Strains Useful in Improving Vegetal Mulch Technology Trough Bioactivation. Romanian Biotechnological Letters, 17(5), 7610-7619. | |
dc.relation | /*ref*/Sigalingging, R., Sumono & Rahmansyah, N. (2018). Evapotranspiration and Crop Coefficient of Oil Palm (Elaeis guineensis Jacq.) on the Main Nursery in a Greenhouse. IOP Conference Series: Earth and Environmental Science, 122(1). doi: 10.1088/1755-1315/122/1/012099 | |
dc.relation | /*ref*/Sim, C. C. & Zaharah, A. R. (2014). Potassium Uptake Kinetics by Oil Palm Root Via Radiotracer Techniques. Asian Journal of Plant Sciences, 13(4), 195-197. doi: 10.3923/ajps.2014.195.197 | |
dc.relation | /*ref*/Rhebergen, T., Fairhurst, T., Giller, K. E. & Zingore, S. (2019). The Influence of Water and Nutrient Management on Oil Palm Yield Trends on a Large-scale Plantation in Ghana. Agricultural Water Management, 221 (noviembre), 377-387. doi: 10.1016/j.agwat.2019.05.003 | |
dc.relation | /*ref*/Rivera, Y., Rodríguez, D. & Romero, H. (2017). Huella de carbono de la producción de racimos de fruta fresca de palma de aceite en Colombia . Recuperado de http://web.fedepalma.org/sites/default/files/files/Cenipalma/posteres-rt-nacional/YRivera__Huella_de_carbono_de_la_ | |
dc.relation | /*ref*/produccion_de_racimos_de_fruta_fresca_RTN_2017_.pdf?fbclid=IwAR12ZbhbhJZHqg9TlYFMBLcmAapZYVLwfgeUc- | |
dc.relation | /*ref*/gjdYynQV3f01Oig-aDGs | |
dc.relation | /*ref*/Rivera, Y., Moreno, A. & Romero, H. (2013). Biochemical and Physiological Characterization of Oil Palm Interspecific Hybrids (Elaeis oleifera x Elaeis guineensis) Grown in Hydroponics. Acta Biológica Colombiana, 18(3), 465-472. | |
dc.relation | /*ref*/Russell, R. & Paterson, M. (2020). Depletion of Indonesian Oil Palm Plantations Implied from Modeling Oil Palm Mortality and Ganoderma boninense. Rot under Future Climate, 7(marzo), 366-379. doi: https://doi.org/10.3934/environsci.2020024 | |
dc.relation | /*ref*/Safitri, L., Hermantoro, H., Purboseno, S., Kautsar, V., Saptomo, S. K. & Kurniawan, A. (2018). Water Footprint and Crop Water Usage of Oil Palm (Eleasis guineensis) in Central Kalimantan: Environmental Sustainability Indicators for Different Crop Age and Soil Conditions. Water (Switzerland), 11(1). doi: 10.3390/w11010035 | |
dc.relation | /*ref*/Salmiyati, heryansyah, A., Idayu, I. & Supriyanto, E. (2014). Oil Palm Plantations Management Effects on Productivity Fresh Fruit Bunch (FFB). APCBEE Procedia, 8(Caas 2013), 282-286. doi: 10.1016/j.apcbee.2014.03.041 | |
dc.relation | /*ref*/Samedani, B., Juraimi, A. S., Anwar, M. P., Rafii, M. Y., Awadz, S. A. S. & Anuar, A. R. (2012). Competitive Ability of Some Cover Crop Species Against Asystasia gangetica and Pennisetum polystachion. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 62(7), 571-582. doi: 10.1080/09064710.2012.677855 | |
dc.relation | /*ref*/Savilaakso, S., García, C., García-Ulloa, J., Ghazoul, J., Groom, M., Guariguata, M. R., …Zrust, M. (2014). Systematic Review of Effects on Biodiversity from Oil Palm Production. Environmental Evidence, 3(1). doi: 10.1186/2047-2382-3-4 | |
dc.relation | /*ref*/Shanmuganathan, S. & Narayanan, A. (2012). Modelling the Climate Change Effects on Malaysia’s Oil Palm Yield. 2012 IEEE Symposium on E-Learning, E-Management and E-Services, IS3e 2012, 71-76. doi: 10.1109/IS3e.2012.6414948 | |
dc.relation | /*ref*/Sicuia, O. A., Oancea, F., Constantinescu, F., Dinu, S. & Cornea, C. P. (2012). Bacillus Strains Useful in Improving Vegetal Mulch Technology Trough Bioactivation. Romanian Biotechnological Letters, 17(5), 7610-7619. | |
dc.relation | /*ref*/Sigalingging, R., Sumono & Rahmansyah, N. (2018). Evapotranspiration and Crop Coefficient of Oil Palm (Elaeis guineensis Jacq.) on the Main Nursery in a Greenhouse. IOP Conference Series: Earth and Environmental Science, 122(1). doi: 10.1088/1755-1315/122/1/012099 | |
dc.relation | /*ref*/Sim, C. C. & Zaharah, A. R. (2014). Potassium Uptake Kinetics by Oil Palm Root Via Radiotracer Techniques. Asian Journal of Plant Sciences, 13(4), 195-197. doi: 10.3923/ajps.2014.195.197 | |
dc.relation | /*ref*/Stiegler, C., Meijide, A., Fan, Y., Ashween Ali, A., June, T. & Knohl, A. (2019). El Niño-Southern Oscillation (ENSO) Event Reduces CO2 Uptake of an Indonesian Oil Palm Plantation. Biogeosciences Discussions, 2015, 1-27. doi: 10.5194/bg-2019-49 | |
dc.relation | /*ref*/Subramaniam, V. (2018). Charting the Water Footprint for Malaysian Crude Palm Oil, 178. doi: 10.1016/j.jclepro.2018.01.061 | |
dc.relation | /*ref*/Sun, C., Cao, H., Shao, H., Lei, X. & Xiao, Y. (2011). Growth and Physiological Responses to Water and Nutrient Stress in Oil Palm. Journal of Biotechnology, 10(51), 10465-10471. https://doi.org/10.5897/AJB11.463 | |
dc.relation | /*ref*/Tao, H., Snaddon, J. L., Slade, E. M., Caliman, J., Widodo, R. H. & Willis, K. J. (2017). Long-term Crop Residue Application Maintains Oil Palm Yield and Temporal Stability of Production. doi: 10.1007/s13593-017-0439-5 | |
dc.relation | /*ref*/Torres, J., Gutiérrez, M. & Chinchilla, C. (2015). Morpho-physiological Monitoring of Oil Palms (Elaeis guineensis Jacq .) Affected by Spear Rots (PC), 26-34. | |
dc.relation | /*ref*/Valente Lima, J., Tinôco, R. S., Olivares, F. L., Moraes, A. J. G. de, Chia, G. S. & Silva, G. B. da. (2020). Hormonal Imbalance Triggered by Rhizobacteria Enhance Nutrient Use Efficiency and Biomass in Oil Palm. Scientia Horticulturae, 264 (enero). doi: 10.1016/j.scienta.2019.109161 | |
dc.relation | /*ref*/Vijiandran, J. R., Husni, M. H. A., Teh, C. B. S., Zaharah, A. R. & Xaviar, A. (2017). Nutrient Losses through Runoff from Several Types of Fertilisers under Mature Oil Palm. Malaysian Journal of Soil Science, 21(diciembre), 113-121. | |
dc.relation | /*ref*/Wu, Y., Chan, E., Melton, J. R. & Verseghy, D. L. (2017). A Map of Global Peatland Distribution Created using Machine Learning for use in Terrestrial Ecosystem and Earth System Models. Geoscientific Model Development Discussions, (julio), 1-21. doi: 10.5194/gmd-2017-152 | |
dc.relation | /*ref*/Xianhai, Z., Denglang, P., Weifu, L. & Zifan, L. (2019). Impact Analysis of Climatic Factors on Vegetative Growth, Yield and Cold Resistance of Oil Palm Introduced in Different Regions of Guangdong Province, China. Journal of Oil Palm Research, 31(1), 73-85. doi: 10.21894/jopr.2019.00p4 | |
dc.relation | /*ref*/Yahya, Z., Palm, M., Board, O., Hashim, Z., Palm, M., Board, O. & Syarif, Y. (2017). Managing Soil Deterioration and Erosion under Oil Palm. | |
dc.relation | /*ref*/Zahrim, A. Y., Asis, T., Hashim, M. A., Al-Mizi, T. M. T. M. A. & Ravindra, P. (2015). A Review on the Empty Fruit Bunch Composting: Life Cycle Analysis and the Effect of Amendment(s). En Ravindra, P. (Ed.), Advances in Bioprocess Technology SE-1 (pp. 3-15). | |
dc.relation | /*ref*/Springer International Publishing. doi: 10.1007/978-3-319-17915-5_1 | |
dc.relation | /*ref*/Zörb, C., Senbayram, M. & Peiter, E. (2014). Potassium in Agriculture-Status and Perspectives. Journal of Plant Physiology, 171(9), 656-669. doi: 10.1016/j.jplph.2013.08.008 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0 | es-ES |
dc.source | Palmas; Vol. 42 Núm. 1 (2021); 81-95 | es-ES |
dc.source | 2744-8266 | |
dc.source | 0121-2923 | |
dc.subject | Oil palm | en-US |
dc.subject | Nutrition efficiency | en-US |
dc.subject | Efficient water use | en-US |
dc.subject | Land cover | en-US |
dc.subject | Palma de aceite | es-ES |
dc.subject | Eficiencia de la nutrición | es-ES |
dc.subject | , Uso eficiente del agua | es-ES |
dc.subject | Cobertura del suelo | es-ES |
dc.title | Water and Nutrition: Necessary Efficiencies Facing of Climate Change and Variability | en-US |
dc.title | Agua y nutrición: eficiencias necesarias frente al cambio y la variabilidad climática | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |