Show simple item record

dc.creatorArias A., Nolver A.
dc.date2021-06-01
dc.identifierhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/13453
dc.descriptionAlterations in the climate associated with climate change and variability are a reality and impact agricultural activities. The changes generated in variables such as: temperature, the concentration of atmospheric CO2, the intensity and frequency of the rains, and the intensity of the winds, affect crop variables such as evapotranspiration, CO2 fixation and, ultimately, yields, as well, such as the availability of land for cultivation. Facing the challenges posed by these climatic phenomena implies the approach of multiple strategies. However, the efficient management of soil, nutrition and water in the crop, constitute three key factors that help mitigate the foreseeable negative impacts. It is then necessary: the implementation of soil protection measures such as plant covers, the increase in soil biodiversity, the use of growth-promoting microorganisms, fertilizer sources that increase efficiency, efficient cultivars in the use of nutrients and water, and measures that favor carbon sequestration such as the accompaniment of the greatest possible diversity of plants to cultivation andthe reduction in the use of agrochemicals that allow reducing the carbon footprint of crude palm oil production. In this article, we will do a review of the efficiencies necessary in terms of nutrition and water management in palm cultivation is carried out to reduce the risk associated with climate change and variability.en-US
dc.descriptionLas alteraciones en el clima asociadas con el cambio y la variabilidad climática son una realidad e impactan las actividades agrícolas. Los cambios generados en variables como: la temperatura, la concentración de CO2 atmosférico, la intensidad y frecuencia de las lluvias, y la de los vientos, afectan variables del cultivo como la evapotranspiración, la fijación de CO2 y, al final, los rendimientos, así como la disponibilidad de tierras para el cultivo. Enfrentar los retos que plantean estos fenómenos climáticos implica el abordaje de múltiples estrategias. Sin embargo, el manejo eficiente del suelo, la nutrición y el agua en el cultivo, se constituyen en tres factores clave que ayudan a mitigar los impactos negativos previsibles. Entonces, es necesario: el incremento de la biodiversidad del suelo, la implementación de medidas de protección del suelo como las coberturas vegetales, el uso de microorganismos promotores de crecimiento, fuentes fertilizantes que incrementen la eficiencia, cultivares eficientes en el uso de nutrientes y el agua, y medidas que favorezcan el secuestro de carbono como el acompañamiento de la mayor diversidad posible de plantas al cultivo y la reducción en el uso de agroquímicos que permitan disminuir la huella de carbono de la producción de aceite de palma crudo. En este artículo se realiza una revisión de las eficiencias necesarias en cuanto al manejo de la nutrición y elagua en el cultivo de la palma para disminuir el riesgo asociado con el cambio y la variabilidad climática.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.languagespa
dc.publisherFedepalmaes-ES
dc.relationhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/13453/13192
dc.relationhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/13453/13732
dc.relation/*ref*/Aholoukpè, H. N. S., Amadji, G. L., Blavet, D., Chotte, J. L., Deleporte, P., Dubos, B., … Jourdan, C. (2016). Effet de la gestion des feuilles d’élagage du palmier à huile sur le stock de carbone et les propriétés physico-chimiques du sol dans les palmeraies villageoises du Bénin. Biotechnology, Agronomy and Society and Environment, 20(2), 171-182.
dc.relation/*ref*/Álvarez, O. M., Ruíz, E., Mosquera-M., M. & Humberto-S, J. (2018). Evaluación económica de sistemas de riego para plantaciones de palma aceitera en la Zona Norte de Colombia TT. Palmas, 39(1), 69-85. Recuperado de https://publicaciones.fedepalma.org/index.php/palmas/article/view/12401
dc.relation/*ref*/Arias, N. A., Beltrán, J. A., Guerrero, J. M. & Sánchez, A. C. (2014). Tecnologías para el manejo de la Pudrición del cogollo (PC) de la palma de aceite validadas en las zonas palmeras de Colombia. Revista Palmas, 35(2), 39-52. Recuperado de http://publicaciones.fedepalma.org/index.php/palmas/article/view/10978
dc.relation/*ref*/Ariyanti, M., Mubarok, S. & Asbur, Y. (2017). Study of Asystasia gangetica (L.) T. Anderson as Cover Cop Against Soil Water Content in Mature Oil Palm Plantation. Journal of Agronomy, 16(4), 154-159. doi: 10.3923/ja.2017.154.159
dc.relation/*ref*/Asbur, Y., Purwaningrum, Y. & Ariyanti, M. (2018). Growth and nutrient balance of Asystasia gangetica ( L .) T . Anderson as Cover Crop for Mature Oil Palm (Elaeis guineensis Jacq.) Plantations. Chilean Journal of Agricultural Research, 78(December), 486-494. doi: 10.4067/S0718-58392018000400486
dc.relation/*ref*/Ashton-butt, A., Hood, A., Ashton-butt, A., Aryawan, A. A. K., Hood, A. S. C., Naim, M., … Snaddon, J. (2018). Understory Vegetation in Oil Palm Plantations Benefits Soil Biodiversity and Understory Vegetation in Oil Palm Plantations Benefits Soil Biodiversity and Decomposition Rates, (octubre 2019). doi: 10.3389/ffgc.2018.00010
dc.relation/*ref*/Beyer, R., Durán, A., Rademacher, T., Martin, P., Tayleur, C., Brooks, S., … Sanderson, F. (2020). The Environmental Impacts of Palm Oil and its Alternatives, 1-18. doi:
dc.relation/*ref*/1101/2020.02.16.951301
dc.relation/*ref*/CAF. (2016). El Niño en América Latina: ¿Cómo mitigar sus efectos en los sectores productivos?
dc.relation/*ref*/Caliman, J. P. & Southworth, A. (1998). Effect of Drought and Haze on the Performance of Oil Palm. International Oil Palm Conference, (I). Recuperado de http://agritrop.cirad.fr/401034/1/ID401034.pdf
dc.relation/*ref*/Carr, M. K. V. (2014). The Water Relations and Irrigation Requirements of Cocoa (Theobroma Cacao L). A Review. Experimental Agriculture, 50(01), 1-23. doi: 10.1017/S0014479713000288
dc.relation/*ref*/de Silva, J., Tuwei, G. & Zhao, F. J. (2016). Environmental Factors Influencing Aluminium Accumulation in Tea (Camellia sinensis L.). Plant and Soil, 400(1-2), 223-230. doi: 10.1007/s11104-015-2729-5
dc.relation/*ref*/Dewi, R. A. S., Indriyati, L. T., Sahari, B. & Sabiham, S. (2017). Loss of Soil Organic Matter, Lignocellulose and Microbial Population in Oil Palm Plantations Located at Different Slopes. Journal of Tropical Soils, 22(3), 175-181. doi: 10.5400/jts.2017.v22i3.175-181
dc.relation/*ref*/Eycott, A. E., Advento, A. D., Waters, H. S., Luke, S. H., Aryawan, A. A. K., Hood, A. S., … Turner, E. C. (2019). Resilience of Ecological Functions to Drought in an Oil Palm Agroecosystem. Environmental Research Communications, 1(10), 101004. doi: 10.1088/2515-7620/ab48da
dc.relation/*ref*/Formaglio, G., Veldkamp, E., Duan, X., Tjoa, A. & Corre, M. (2020). Herbicide Weed Control Increases Nutrient Leaching as Compared to Mechanical Weeding in a Large-scale Oil Palm Plantation. Biogeosciences Discussions, (junio), 1-53. doi: 10.5194/bg-2020-153
dc.relation/*ref*/Gafur, M. A. & Putra, E. T. S. (2019). Effect of Drought Stress in Physiological Oil Palm Seedling (Elaeis guineensis Jacq.) Using Calcium Application. Asian Journal of Biological Sciences, 12(3), 550-556. doi: 10.3923/ajbs.2019.550.556
dc.relation/*ref*/Giller, K. E., Woittiez, L. S., van Wijk, M. T., Slingerland, M. & van Noordwijk, M. (2017). Yield Gaps in Oil Palm: A Quantitative Review of Contributing Factors. European Journal of Agronomy, 83, 57-77. doi: 10.1016/j.eja.2016.11.002
dc.relation/*ref*/Hardwick, S. R., Toumi, R., Pfeifer, M., Turner, E. C., Nilus, R. & Ewers, R. M. (2015). The Relationship between Leaf Area Index and Microclimate in Tropical Forest and Oil Palm Plantation: Forest Disturbance Drives Changes in Microclimate. Agricultural and Forest Meteorology, 201(March), 187-195. doi: 10.1016/j.agrformet.2014.11.010
dc.relation/*ref*/Henson, I. E., Harun, M. H. & Chang, K. C. (2008). Some Observations on the Effects of High Water Tables and Flooding on Oil Palm, and a Preliminary Model of Oil Palm Water Balance and Use in the Presence of a High Water Table. Oil Palm Bulletin, 56(May), 14-22.
dc.relation/*ref*/Hong Xing, C., Cheng Xu, S., Hong Bo, S. & Xin Tao, L. (2016). Effects of Low Temperature and Drought on the Physiological and Growth Changes in Oil Palm Seedlings. African Journal of Biotechnology, 10(14), 2630-2637. doi: 10.5897/ajb10.1272
dc.relation/*ref*/Husni, M. H. A., Bah, A., Ahmed, O. H., Syed Omar, S. R., Teh, C. B. S. & Rafii, M. Y. (2014). Reducing Runoff Loss of Applied Nutrients in Oil Palm Cultivation Using Controlled-Release Fertilizers. Advances in Agriculture, 2014(Diciembre), 1-9. doi: 10.1155/2014/285387
dc.relation/*ref*/Ideam. (2015). Nuevos escenarios para el cambio climático para Colombia 2011-2100.
dc.relation/*ref*/Ideam, 13. Recuperado de http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WGI_AR5_TS_FAQ_ES.pdf%5Cn%5Cnhttp://www.enteregionsur.com.ar/varios/user_files/
dc.relation/*ref*/multimedia_1328640503.doc%5Cnhttp://www.fao.org/docrep/018/i3325e/i3325e00.htm%5Cnhttp://revistaing.uniandes.edu.co/pdf/26a9.pdf%5Cnhttp:
dc.relation/*ref*/Jamaluddin, U. A., Lim, C. S. & Pereira, J. J. (2018). Implications of Climate Change on the Coastal Zone of Kuala Selangor, Malaysia. Bulletin of the Geological Society of Malaysia, 66(Febrero 2019), 107-119. doi: 10.7186/bgsm66201814
dc.relation/*ref*/Jazayeri, S. M., Rivera, Y. D., Camperos-Reyes, J. E. & Romero, H. M. (2015). Physiological Effects of Water Deficit on Two Oil Palm (Elaeis guineensis Jacq.) Genotypes. Agronomía Colombiana, 33(2), 164-173. doi: 10.15446/agron.colomb.v33n2.49846
dc.relation/*ref*/Kananam, W., Suksaroj, T. T. & Suksaroj, C. (2011). Biochemical Changes during Oil Palm (Elaeis guineensis) Empty Fruit Bunches Composting with Decanter Sludge and Chicken Manure. ScienceAsia, 37(1), 17-23. doi: 10.2306/scienceasia1513-1874.2011.37.017
dc.relation/*ref*/Khasanah, N., van Noordwijk, M., Ningsih, H. & Rahayu, S. (2015). Carbon Neutral? No Change in Mineral Soil Carbon Stock Under Oil Palm Plantations Derived from Forest or non-forest in Indonesia. Agriculture, Ecosystems and Environment, 211, 195-206. doi: 10.1016/j.agee.2015.06.009
dc.relation/*ref*/Kospa, D., Lulofs, K. & Asdak, C. (2017). Estimating Water Footprint of Palm Oil Production in PTP Mitra Ogan. International Journal of Advanced Engineering Information Technology, 7(6), 2115-2121.
dc.relation/*ref*/Landis, T. D. & Dumroese, R. K. (2009). Using Polymer-coated Controlled-release Fertilizers in the Nursery and After Outplanting. Forest Nursery Notes, (C), 5-12.
dc.relation/*ref*/Lubis, M. E. S., Harahap, I. Y., Hidayat, T. C., Pangaribua, Y., Sutarta, E. S., Rahman, Z. A., … Hanafi, M. M. (2014). Changes in Water Table Depth in an Oil Palm Plantation and its Surrounding Regions in Sumatra, Indonesia. Journal of Agronomy. doi: 10.3923/ja.2014.140.146
dc.relation/*ref*/Madzen, A. A. & Choy, L. K. (2017). Respons fenologi tumbuhan terhadap taburan hujan di johor menggunakan data indeks tumbuhan satelit MODIS-Aqua. Sains Malaysiana, 46(3), 421-428. doi: 10.17576/jsm-2017-4603-09
dc.relation/*ref*/Mangena, P. (2018). Water Stress: Morphological and Anatomical Changes in Soybean (Glycine max L.) Plants. Plant, Abiotic Stress and Responses to Climate Change, (mayo). doi: 10.5772/intechopen.72899
dc.relation/*ref*/Mejía, J. (2000). Consumo de agua por la palma de aceite y efectos del riego sobre la producción de racimos, una revisión de literatura. Revista Palmas, 21(1), 51-58. Recuperado de http://publicaciones.fedepalma.org/index.php/palmas/article/view/726/726
dc.relation/*ref*/Morel, M. a., Braña, V. & Castro-Sowinski, S. (2012). Legume Crops, Importance and Use of Bacterial Inoculation to Increase Production. Crop Plant, 217-240. doi: 10.5772/37413.
dc.relation/*ref*/Mosquera, M. & Ruiz, E. (2016). Costos de producción de la agroindustria de la palma de aceite en Colombia en 2014, (Marzo).
dc.relation/*ref*/Murtilaksono, K., Ariyanti, M., Asbur, Y., Siregar, H. H., Sutarta, E. S., Yanya, S., … Yusuf, M. (2018). Surface Runoff and Soil Erosion in Oil Palm Plantation of Management Unit of Rejosari, PT Perkebunan Nusantara VII. Conf. Series: Earth and Environmental Science, 0-5. doi: 10.1088/1755-1315/196/1/012002
dc.relation/*ref*/Najihah, T. S., Ibrahim, M. H., Zain, N. A. M., Nulit, R. & Wahab, P. E. M. (2020). Activity of the Oil Palm Seedlings Exposed to a Different Rate of Potassium Fertilizer under Water Stress Sondition. AIMS Environmental Science, 7(1), 46-68. doi: 10.3934/environsci.2020004
dc.relation/*ref*/Oettli, P., Behera, S. K. & Yamagata, T. (2018). Climate Based Predictability of Oil Palm Tree Yield in Malaysia. Scientific Reports, 8(1), 1-13. doi: 10.1038/s41598-018-20298-0
dc.relation/*ref*/Ollivier, J., Flori, A., Cochard, B., Amblard, P., Turnbull, N., Syahputra, I., … Gasselin, D. T. (2017). Genetic Variation in Nutrient Uptake and Nutrient Use Efficiency of Oil Palm. Journal of Plant Nutrition, 40(4), 558-573. doi: 10.1080/01904167.2016.1262415
dc.relation/*ref*/Othman, H., Mohammed, A. T., Harun, M. H., Darus, F. M. & Mos, M. (2010). Best Management Practices for Oil Palm Planting on Peat: Optimum Groundwater Table. MPOB Information Series. Recuperado de http://palmoilis.mpob.gov.my/publications/TOT/TT-472.pdf
dc.relation/*ref*/Pardon, L., Ian Huth, N., Netelenbos Nelson, P., Banabas, M., Gabrielle, B. & Bessou, C. (2017). Yield and Nitrogen Losses in Oil Palm Plantations: Main Drivers and Management Tradeoffs Determined Using Simulation. Field Crops Research, 210(mayo), 20-32. doi: 10.1016/j.fcr.2017.05.016
dc.relation/*ref*/Pontigo, S., Ribera, A., Gianfreda, L., de la Luz Mora, M., Nikolic, M. & Cartes, P. (2015). Silicon in Vascular Plants: Uptake, Transport and its Influence on Mineral Stress under Acidic Conditions. Planta, 242(1), 23-37. doi: 10.1007/s00425-015-2333-1
dc.relation/*ref*/Rahim, K. a. (2002). Biofertilizers in Malaysian Agriculture: Perception, Demand and Promotion. Country Report of Malaysia, 1-6. Recuperado de http://www.fnca.mext.go.jp/english/bf/country_img/malaysia.pdf
dc.relation/*ref*/Rhebergen, T. (2012). Analysis of Implementation of Best Management Practices in Oil Palm Plantations in Indonesia. Wageningen Universiteit. doi: 10.1016/j.still.2014.08.005
dc.relation/*ref*/Rhebergen, T., Fairhurst, T., Whitbread, A. & Giller, K. E. (2018). Yield Gap Analysis and Entry Points for Improving Productivity on Large Oil Palm Plantations and Smallholder Farms in Ghana. Agricultural Systems, 165(febrero), 14-25. doi: 10.1016/j.agsy.2018.05.012
dc.relation/*ref*/Rhebergen, T., Fairhurst, T., Giller, K. E. & Zingore, S. (2019). The Influence of Water and Nutrient Management on Oil Palm Yield Trends on a Large-scale Plantation in Ghana. Agricultural Water Management, 221 (noviembre), 377-387. doi: 10.1016/j.agwat.2019.05.003
dc.relation/*ref*/Rivera, Y., Rodríguez, D. & Romero, H. (2017). Huella de carbono de la producción de racimos de fruta fresca de palma de aceite en Colombia . Recuperado de http://web.fedepalma.org/sites/default/files/files/Cenipalma/posteres-rt-nacional/YRivera__Huella_de_carbono_de_la_produccion_de_racimos_de_fruta_fresca_RTN_2017_.pdf?fbclid=IwAR12ZbhbhJZHqg9TlYFMBLcmAapZYVLwfgeUc-
dc.relation/*ref*/gjdYynQV3f01Oig-aDGs
dc.relation/*ref*/Rivera, Y., Moreno, A. & Romero, H. (2013). Biochemical and Physiological Characterization of Oil Palm Interspecific Hybrids (Elaeis oleifera x Elaeis guineensis) Grown in Hydroponics. Acta Biológica Colombiana, 18(3), 465-472.
dc.relation/*ref*/Russell, R. & Paterson, M. (2020). Depletion of Indonesian Oil Palm Plantations Implied from Modeling Oil Palm Mortality and Ganoderma boninense. Rot under Future Climate, 7(marzo), 366-379. doi: https://doi.org/10.3934/environsci.2020024
dc.relation/*ref*/Safitri, L., Hermantoro, H., Purboseno, S., Kautsar, V., Saptomo, S. K. & Kurniawan, A. (2018). Water Footprint and Crop Water Usage of Oil Palm (Eleasis guineensis) in Central Kalimantan: Environmental Sustainability Indicators for Different Crop Age and Soil Conditions. Water (Switzerland), 11(1). doi: 10.3390/w11010035
dc.relation/*ref*/Salmiyati, heryansyah, A., Idayu, I. & Supriyanto, E. (2014). Oil Palm Plantations Management Effects on Productivity Fresh Fruit Bunch (FFB). APCBEE Procedia, 8(Caas 2013), 282-286. doi: 10.1016/j.apcbee.2014.03.041
dc.relation/*ref*/Samedani, B., Juraimi, A. S., Anwar, M. P., Rafii, M. Y., Awadz, S. A. S. & Anuar, A. R. (2012). Competitive Ability of Some Cover Crop Species Against Asystasia gangetica and Pennisetum polystachion. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 62(7), 571-582. doi: 10.1080/09064710.2012.677855
dc.relation/*ref*/Savilaakso, S., García, C., García-Ulloa, J., Ghazoul, J., Groom, M., Guariguata, M. R., …Zrust, M. (2014). Systematic Review of Effects on Biodiversity from Oil Palm Production. Environmental Evidence, 3(1). doi: 10.1186/2047-2382-3-4
dc.relation/*ref*/Shanmuganathan, S. & Narayanan, A. (2012). Modelling the Climate Change Effects on Malaysia’s Oil Palm Yield. 2012 IEEE Symposium on E-Learning, E-Management and E-Services, IS3e 2012, 71-76. doi: 10.1109/IS3e.2012.6414948
dc.relation/*ref*/Sicuia, O. A., Oancea, F., Constantinescu, F., Dinu, S. & Cornea, C. P. (2012). Bacillus Strains Useful in Improving Vegetal Mulch Technology Trough Bioactivation. Romanian Biotechnological Letters, 17(5), 7610-7619.
dc.relation/*ref*/Sigalingging, R., Sumono & Rahmansyah, N. (2018). Evapotranspiration and Crop Coefficient of Oil Palm (Elaeis guineensis Jacq.) on the Main Nursery in a Greenhouse. IOP Conference Series: Earth and Environmental Science, 122(1). doi: 10.1088/1755-1315/122/1/012099
dc.relation/*ref*/Sim, C. C. & Zaharah, A. R. (2014). Potassium Uptake Kinetics by Oil Palm Root Via Radiotracer Techniques. Asian Journal of Plant Sciences, 13(4), 195-197. doi: 10.3923/ajps.2014.195.197
dc.relation/*ref*/Rhebergen, T., Fairhurst, T., Giller, K. E. & Zingore, S. (2019). The Influence of Water and Nutrient Management on Oil Palm Yield Trends on a Large-scale Plantation in Ghana. Agricultural Water Management, 221 (noviembre), 377-387. doi: 10.1016/j.agwat.2019.05.003
dc.relation/*ref*/Rivera, Y., Rodríguez, D. & Romero, H. (2017). Huella de carbono de la producción de racimos de fruta fresca de palma de aceite en Colombia . Recuperado de http://web.fedepalma.org/sites/default/files/files/Cenipalma/posteres-rt-nacional/YRivera__Huella_de_carbono_de_la_
dc.relation/*ref*/produccion_de_racimos_de_fruta_fresca_RTN_2017_.pdf?fbclid=IwAR12ZbhbhJZHqg9TlYFMBLcmAapZYVLwfgeUc-
dc.relation/*ref*/gjdYynQV3f01Oig-aDGs
dc.relation/*ref*/Rivera, Y., Moreno, A. & Romero, H. (2013). Biochemical and Physiological Characterization of Oil Palm Interspecific Hybrids (Elaeis oleifera x Elaeis guineensis) Grown in Hydroponics. Acta Biológica Colombiana, 18(3), 465-472.
dc.relation/*ref*/Russell, R. & Paterson, M. (2020). Depletion of Indonesian Oil Palm Plantations Implied from Modeling Oil Palm Mortality and Ganoderma boninense. Rot under Future Climate, 7(marzo), 366-379. doi: https://doi.org/10.3934/environsci.2020024
dc.relation/*ref*/Safitri, L., Hermantoro, H., Purboseno, S., Kautsar, V., Saptomo, S. K. & Kurniawan, A. (2018). Water Footprint and Crop Water Usage of Oil Palm (Eleasis guineensis) in Central Kalimantan: Environmental Sustainability Indicators for Different Crop Age and Soil Conditions. Water (Switzerland), 11(1). doi: 10.3390/w11010035
dc.relation/*ref*/Salmiyati, heryansyah, A., Idayu, I. & Supriyanto, E. (2014). Oil Palm Plantations Management Effects on Productivity Fresh Fruit Bunch (FFB). APCBEE Procedia, 8(Caas 2013), 282-286. doi: 10.1016/j.apcbee.2014.03.041
dc.relation/*ref*/Samedani, B., Juraimi, A. S., Anwar, M. P., Rafii, M. Y., Awadz, S. A. S. & Anuar, A. R. (2012). Competitive Ability of Some Cover Crop Species Against Asystasia gangetica and Pennisetum polystachion. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 62(7), 571-582. doi: 10.1080/09064710.2012.677855
dc.relation/*ref*/Savilaakso, S., García, C., García-Ulloa, J., Ghazoul, J., Groom, M., Guariguata, M. R., …Zrust, M. (2014). Systematic Review of Effects on Biodiversity from Oil Palm Production. Environmental Evidence, 3(1). doi: 10.1186/2047-2382-3-4
dc.relation/*ref*/Shanmuganathan, S. & Narayanan, A. (2012). Modelling the Climate Change Effects on Malaysia’s Oil Palm Yield. 2012 IEEE Symposium on E-Learning, E-Management and E-Services, IS3e 2012, 71-76. doi: 10.1109/IS3e.2012.6414948
dc.relation/*ref*/Sicuia, O. A., Oancea, F., Constantinescu, F., Dinu, S. & Cornea, C. P. (2012). Bacillus Strains Useful in Improving Vegetal Mulch Technology Trough Bioactivation. Romanian Biotechnological Letters, 17(5), 7610-7619.
dc.relation/*ref*/Sigalingging, R., Sumono & Rahmansyah, N. (2018). Evapotranspiration and Crop Coefficient of Oil Palm (Elaeis guineensis Jacq.) on the Main Nursery in a Greenhouse. IOP Conference Series: Earth and Environmental Science, 122(1). doi: 10.1088/1755-1315/122/1/012099
dc.relation/*ref*/Sim, C. C. & Zaharah, A. R. (2014). Potassium Uptake Kinetics by Oil Palm Root Via Radiotracer Techniques. Asian Journal of Plant Sciences, 13(4), 195-197. doi: 10.3923/ajps.2014.195.197
dc.relation/*ref*/Stiegler, C., Meijide, A., Fan, Y., Ashween Ali, A., June, T. & Knohl, A. (2019). El Niño-Southern Oscillation (ENSO) Event Reduces CO2 Uptake of an Indonesian Oil Palm Plantation. Biogeosciences Discussions, 2015, 1-27. doi: 10.5194/bg-2019-49
dc.relation/*ref*/Subramaniam, V. (2018). Charting the Water Footprint for Malaysian Crude Palm Oil, 178. doi: 10.1016/j.jclepro.2018.01.061
dc.relation/*ref*/Sun, C., Cao, H., Shao, H., Lei, X. & Xiao, Y. (2011). Growth and Physiological Responses to Water and Nutrient Stress in Oil Palm. Journal of Biotechnology, 10(51), 10465-10471. https://doi.org/10.5897/AJB11.463
dc.relation/*ref*/Tao, H., Snaddon, J. L., Slade, E. M., Caliman, J., Widodo, R. H. & Willis, K. J. (2017). Long-term Crop Residue Application Maintains Oil Palm Yield and Temporal Stability of Production. doi: 10.1007/s13593-017-0439-5
dc.relation/*ref*/Torres, J., Gutiérrez, M. & Chinchilla, C. (2015). Morpho-physiological Monitoring of Oil Palms (Elaeis guineensis Jacq .) Affected by Spear Rots (PC), 26-34.
dc.relation/*ref*/Valente Lima, J., Tinôco, R. S., Olivares, F. L., Moraes, A. J. G. de, Chia, G. S. & Silva, G. B. da. (2020). Hormonal Imbalance Triggered by Rhizobacteria Enhance Nutrient Use Efficiency and Biomass in Oil Palm. Scientia Horticulturae, 264 (enero). doi: 10.1016/j.scienta.2019.109161
dc.relation/*ref*/Vijiandran, J. R., Husni, M. H. A., Teh, C. B. S., Zaharah, A. R. & Xaviar, A. (2017). Nutrient Losses through Runoff from Several Types of Fertilisers under Mature Oil Palm. Malaysian Journal of Soil Science, 21(diciembre), 113-121.
dc.relation/*ref*/Wu, Y., Chan, E., Melton, J. R. & Verseghy, D. L. (2017). A Map of Global Peatland Distribution Created using Machine Learning for use in Terrestrial Ecosystem and Earth System Models. Geoscientific Model Development Discussions, (julio), 1-21. doi: 10.5194/gmd-2017-152
dc.relation/*ref*/Xianhai, Z., Denglang, P., Weifu, L. & Zifan, L. (2019). Impact Analysis of Climatic Factors on Vegetative Growth, Yield and Cold Resistance of Oil Palm Introduced in Different Regions of Guangdong Province, China. Journal of Oil Palm Research, 31(1), 73-85. doi: 10.21894/jopr.2019.00p4
dc.relation/*ref*/Yahya, Z., Palm, M., Board, O., Hashim, Z., Palm, M., Board, O. & Syarif, Y. (2017). Managing Soil Deterioration and Erosion under Oil Palm.
dc.relation/*ref*/Zahrim, A. Y., Asis, T., Hashim, M. A., Al-Mizi, T. M. T. M. A. & Ravindra, P. (2015). A Review on the Empty Fruit Bunch Composting: Life Cycle Analysis and the Effect of Amendment(s). En Ravindra, P. (Ed.), Advances in Bioprocess Technology SE-1 (pp. 3-15).
dc.relation/*ref*/Springer International Publishing. doi: 10.1007/978-3-319-17915-5_1
dc.relation/*ref*/Zörb, C., Senbayram, M. & Peiter, E. (2014). Potassium in Agriculture-Status and Perspectives. Journal of Plant Physiology, 171(9), 656-669. doi: 10.1016/j.jplph.2013.08.008
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourcePalmas; Vol. 42 Núm. 1 (2021); 81-95es-ES
dc.source2744-8266
dc.source0121-2923
dc.subjectOil palmen-US
dc.subjectNutrition efficiencyen-US
dc.subjectEfficient water useen-US
dc.subjectLand coveren-US
dc.subjectPalma de aceitees-ES
dc.subjectEficiencia de la nutriciónes-ES
dc.subject, Uso eficiente del aguaes-ES
dc.subjectCobertura del sueloes-ES
dc.titleWater and Nutrition: Necessary Efficiencies Facing of Climate Change and Variabilityen-US
dc.titleAgua y nutrición: eficiencias necesarias frente al cambio y la variabilidad climáticaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record