dc.creator | González Díaz , Alexis | |
dc.creator | García Núñez, Jesús A. | |
dc.date | 2021-11-26 | |
dc.identifier | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13582 | |
dc.description | Throughout the oil palm production chain (OPPC), large quantities of solid and liquid by‒products are generated with a certain content of residual oily fractions, as well as fatty by‒products. Residual oils recovered from palm pressed fibres and palm oil mill effluents, as well as palm distillate fatty acids and oily fractions extracted from spent bleaching earths resulting from refining crude palm oil, as well as oil recovered from the bottoms of palm biodiesel distillation columns, contain significant amounts of vitamin E, carotenoids, squalene and phy-tosterols, biologically active compounds of functional and nutritional value that represent a real opportunity for the generation of new products and for entry into niche markets. Currently, there are a growing number of studies focused on the potential uses and applicable technologies for the recovery and refining of palm phytochemicals from CPPA by‒products. This paper aims to provide an overview of the main phytochemicals recoverable from certain by‒products of the CPPA and the concentrations of these compounds found in different studies, as well as to present a general estimate of the number of phytochemicals that can be recovered and the technologies and methodologies employed for this purpose. This work aims to propose phytochemical-rich palm waste oils as available raw materials for different industries | en-US |
dc.description | A lo largo de la cadena productiva de la palma de aceite (CPPA) se generan grandes cantidades de subproductos sólidos y líquidos con cierto contenido de fracciones aceitosas residuales, además de subproductos grasos. Los aceites residuales recuperados de las fibras prensadas y de los efluentes de las plantas de beneficio, al igual que los ácidos grasos destilados de palma y las fracciones aceitosas extraídas de las tierras de blanqueo gastadas que son resultantes de la refinación del aceite de palma crudo, así como, el aceite recuperado de los fondos de las columnas de destilación de biodiésel de palma, contienen cantidades importantes de vitamina E, carotenoides, escualeno y fitoesteroles, compuestos biológicamente activos de valor funcional y nutricional que representan una oportunidad real para la generación de nuevos productos y para la incursión en mercados especializados. Actualmente, existe un número creciente de estudios focalizados en los potenciales usos y en las tecnologías aplicables para la recuperación y refinación de fitoquímicos de palma a partir de subproductos de la CPPA. Este estudio tiene como objetivo proporcionar una visión general de las bonda- des de los principales fitoquímicos recuperables de ciertos subproductos de la CPPA y de las concentraciones de estos mismos compuestos encontrados en distintos trabajos, además de presentar un estimativo general de la cantidad de fitoquímicos que pueden ser recuperados y las tecnologías y metodologías empleadas para tal fin. Este documento pretende proponer a los aceites residuales ricos en fitoquímicos de palma como materias primas disponibles para distintas industrias. | es-ES |
dc.format | application/pdf | |
dc.format | text/xml | |
dc.language | spa | |
dc.publisher | Fedepalma | es-ES |
dc.relation | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13582/13318 | |
dc.relation | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13582/13687 | |
dc.relation | /*ref*/Abdelmoez, W., Ashour, E. & Naguib, S. M. (2015). A Review on Green Trend for Oil Extraction Using Subcritical Water Technology and Biodiesel Production. Journal of Oleo Science, 64(5), 467-478. doi: 10.5650/jos.ess14269 | |
dc.relation | /*ref*/Abdul Kapor, N. Z., Maniam, G. P., Rahim, M. H. A. & Yusoff, M. M. (2017). Palm Fatty Acid Distillate as a Potential Source for Biodiesel Production-a Review. Journal of Cleaner Production, 143(December), 1-9. doi: 10.1016/j.jclepro.2016.12.163 | |
dc.relation | /*ref*/Advanced Chemistry Development Inc. (ACD/Labs). (2018). ACD/ChemSketch. Toronto. Recuperado de https://www.acdlabs.com/ | |
dc.relation | /*ref*/Alizadeh, F., Bolhassani, A., Khavari, A., Bathaie, S. Z., Naji, T. & Bidgoli, S. A. (2014). Retinoids and their Biological Effects Against Cancer. International Immunopharmacology, 18(1), 43-49. doi: 10.1016/j.intimp.2013.10.027 | |
dc.relation | /*ref*/Almeida, E. S., Carvalho, A. C. B., Soares, I. O. de S., Valadares, L. F., Mendonça, A. R. V., Silva, I. J. & Monteiro, S. (2019). Elucidating How Two Different Types of Bleaching Earths Widely Used in Vegetable Oils Industry Remove Carotenes from Palm Oil: Equilibrium, Kinetics and Thermodynamic Parameters. Food Research International, 121(January), | |
dc.relation | /*ref*/785-797. doi: 10.1016/j.foodres.2018.12.061 | |
dc.relation | /*ref*/Alvarenga, G. L., Cuevas, M. S., Capellini, M. C., Crevellin, E. J., de Moraes, L. A. B. & Rodrigues, C. E. da C. (2020). Extraction of Carotenoid-rich Palm Pressed Fiber Oil Using Mixtures of Hydrocarbons and short chain alcohols. Food Research International, 128, | |
dc.relation | /*ref*/doi: 10.1016/j.foodres.2019.108810 | |
dc.relation | /*ref*/Asemi, Z., Alizadeh, S. A., Ahmad, K., Goli, M. & Esmaillzadeh, A. (2016). Effects of Beta- Carotene Fortified Synbiotic Food on Metabolic Control of Patients with Type 2 Diabetes Mellitus: A Double-Blind Randomized Cross-Over Controlled Clinical Trial. Clinical Nutrition, 35(4), 819-825. doi: 10.1016/j.clnu.2015.07.009 | |
dc.relation | /*ref*/Bacchetti, T., Masciangelo, S., Bicchiega, V., Bertoli, E. & Ferretti, G. (2011). Phytosterols, Phytostanols and their Esters: From Natural to Functional Foods. Mediterranean Journal of Nutrition and Metabolism, 4(3), 165-172. doi: 10.1007/s12349-010-0049-0 | |
dc.relation | /*ref*/Bail, J., Meneses, K. & Demark-Wahnefried, W. (2016). Nutritional Status and Diet in Cancer Prevention. Seminars in Oncology Nursing, 32(3), 206-214. doi: 10.1016/j.soncn.2016.05.004 | |
dc.relation | /*ref*/Balić, & Mokos. (2019). Do We Utilize Our Knowledge of the Skin Protective Effects of Carotenoids Enough? Antioxidants, 8(8), 259. doi: 10.3390/antiox8080259 | |
dc.relation | /*ref*/Bartella, L., Di Donna, L., Napoli, A., Sindona, G. & Mazzotti, F. (2019). High-throughput Determination of Vitamin E in Extra Virgin Olive Oil by Paper Spray Tandem Mass Spectrometry. Analytical and Bioanalytical Chemistry. doi: 10.1007/s00216-019-01727-z | |
dc.relation | /*ref*/Batory, M., Namieciński, P. & Rotsztejn, H. (2019). Evaluation of Structural Damage and Ph of Nail Plates of Hands After Applying Different Methods of Decorating. International Journal of Dermatology, 58(3), 311-318. doi: 10.1111/ijd.14198 | |
dc.relation | /*ref*/Baumgartner, S., Mensink, R. P., Smet, E. De, Konings, M., Fuentes, S., de Vos, W. M. & Plat, J. (2017). Effects of Plant Stanol Ester Consumption on Fasting Plasma Oxy(Phyto) Sterol Concentrations as Related to Fecal Microbiota Characteristics. Journal of Steroid Biochemistry and Molecular Biology, 169, 46-53. doi: 10.1016/j.jsbmb.2016.02.029 | |
dc.relation | /*ref*/Bennett, L. L., Rojas, S. & Seefeldt, T. (2012). Role of Antioxidants in the Prevention of Cancer. Journal of Experimental and Clinical Medicine, 4(4), 215-222. doi: 10.1016/j.jecm.2012.06.001 | |
dc.relation | /*ref*/Beshara, A. & Cheeseman, C. R. (2014). Reuse of Spent Bleaching Earth by Polymerisation of Residual Organics. Waste Management, 34(10), 1770-1774. doi: 10.1016/j.wasman.2014.04.021 | |
dc.relation | /*ref*/Birhanu, G., Javar, H. A., Seyedjafari, E. & Zandi-Karimi, A. (2017). Nanotechnology for Delivery of Gemcitabine to Treat Pancreatic Cancer. Biomedicine and Pharmacotherapy, 88, 635-643. doi: 10.1016/j.biopha.2017.01.071 | |
dc.relation | /*ref*/Bohn, T., Desmarchelier, C., El, S. N., Keijer, J., Van Schothorst, E., Rühl, R. & Borel, P. (2019). β-Carotene in the Human Body: Metabolic Bioactivation Pathways-From Digestion to Tissue Distribution and Excretion. Proceedings of the Nutrition Society, 78(1), 68-87. doi: 10.1017/S0029665118002641 | |
dc.relation | /*ref*/Buddhan, S., Sivakumar, R., Dhandapani, N., Ganesan, B. & Anandan, R. (2007). Protective Effect of Dietary Squalene Supplementation on Mitochondrial Function in Liver of Aged Rats. Prostaglandins Leukotrienes and Essential Fatty Acids, 76(6), 349-355. doi: 10.1016/j. plefa.2007.05.001 | |
dc.relation | /*ref*/Butt, H., Mehmood, A., Ali, M., Tasneem, S., Anjum, M. S., Tarar, M. N., … Riazuddin, S. (2017). Protective Role of Vitamin E Preconditioning of Human Dermal Fibroblasts Against Thermal Stress In Vitro. Life Sciences, 184, 1-9. doi: 10.1016/j.lfs.2017.07.002 | |
dc.relation | /*ref*/Chang, A. S., Sherazi, S. T. H., Kandhro, A. A., Mahesar, S. A., Chang, F., Shah, S. N., … Panhwar, T. (2016). Characterization of Palm Fatty Acid Distillate of Different Oil Processing Industries of Pakistan. Journal of Oleo Science, 65(11), 897-901. doi: 10.5650/jos.ess16073 | |
dc.relation | /*ref*/Chang, Z. Q., Gebru, E., Lee, S. P., Rhee, M. H., Kim, J. C., Cheng, H. & Park, S. C. (2011). In Vitro Antioxidant and Anti-Inflammatory Activities of Protocatechualdehyde Isolated From Phellinus gilvus. Journal of Nutritional Science and Vitaminology, 57(1), 118-122. doi: 10.3177/jnsv.57.118 | |
dc.relation | /*ref*/Chaves, G., Ligarreto-Moreno, G. A. & Cayon-Salinas, D. G. (2018). Physicochemical Characterization of Bunches from American Oil Palm (Elaeis oleifera H. B. K. Cortés) and their hybrids with African oil palm (Elaeis guineensis Jacq.). Acta Agronómica, 67(1), 168-176. doi: 10.15446/acag.v67n1.62028 | |
dc.relation | /*ref*/Cheah, K. Y., Toh, T. S. & Koh, P. M. (2010). Palm Fatty Acid Distillate Biodiesel: Next- Generation Palm Biodiesel. INFORM-International News on Fats, Oils and Related Materials, 21(5), 264-266. | |
dc.relation | /*ref*/Choi, J., Jiang, X., Jeong, J. B. & Lee, S. H. (2014). Anticancer Activity of Protocatechualdehyde in Human Breast Cancer Cells. Journal of Medicinal Food, 17(8), 842-848. doi: 10.1089/ jmf.2013.0159 | |
dc.relation | /*ref*/Chu, B. S., Baharin, B. S., Che Man, Y. B. & Quek, S. Y. (2004). Separation of Vitamin E from Palm Fatty Acid Distillate Using Silica. III. Batch Desorption Study. Journal of Food Engineering, 64(1), 1-7. doi: 10.1016/S0260-8774(03)00198-5 | |
dc.relation | /*ref*/Chua, C. S. L., Baharin, B. S., Man, Y. B. C. & Tan, C. P. (2007). Separation of Squalene from Palm Fatty Acid Distillate Using Adsorption Chromatography. European Journal of Lipid Science and Technology, 109(11), 1083-1087. doi: 10.1002/ejlt.200700312 | |
dc.relation | /*ref*/Cirmena, G., Franceschelli, P., Isnaldi, E., Ferrando, L., De Mariano, M., Ballestrero, A. & Zoppoli, G. (2018). Squalene Epoxidase as a Promising Metabolic Target in Cancer Treatment. Cancer Letters, 425, 13-20. doi: 10.1016/j.canlet.2018.03.034 | |
dc.relation | /*ref*/Cláudio, A. F. M., Ferreira, A. M., Freire, C. S. R., Silvestre, A. J. D., Freire, M. G. & Coutinho, J. A. P. (2012). Optimization of the Gallic Acid Extraction Using Ionic-Liquid-Based Aqueous Two-Phase Systems. Separation and Purification Technology, 97, 142-149. doi: 10.1016/j.seppur.2012.02.036 | |
dc.relation | /*ref*/Condron, K. N., Waddell, J. N., Claeys, M. C., Lemenager, R. P. & Schoonmaker, J. P. (2017). | |
dc.relation | /*ref*/Effect of Supplemental Β-Carotene Compared to Retinyl Palmitate on Fatty Acid Profile and Expression of mRNA from Genes Involved in Vitamin a Metabolism in Beef Feedlot Cattle. Animal Science Journal, 88(9), 1380-1387. doi: 10.1111/asj.12794 | |
dc.relation | /*ref*/D’Archivio, M., Scazzocchio, B., Giovannini, C. & Masella, R. (2014). Chapter 15 - Role of Protocatechuic Acid in Obesity-Related Pathologies. En Watson, R. R., Preedy, V. R. & Zibadi, S. (Eds.). Polyphenols in Human Health and Disease pp. 177-189. San Diego: Academic Press. doi: 10.1016/B978-0-12-398456-2.00015-3 | |
dc.relation | /*ref*/Dal Prá, V., Lunelli, F. C., Vendruscolo, R. G., Martins, R., Wagner, R., Lazzaretti, A. P., … da Rosa, M. B. (2017). Ultrasound-Assisted Extraction of Bioactive Compounds from Palm Pressed Fiber with High Antioxidant and Photoprotective Activities. Ultrasonics Sonochemistry, 36, 362-366. doi: 10.1016/j.ultsonch.2016.12.021 | |
dc.relation | /*ref*/Dal Prá, V., Soares, J. F., Monego, D. L., Vendruscolo, R. G., Freire, D. M. G., Alexandri, M., … Da Rosa, M. B. (2016). Extraction of Bioactive Compounds from Palm (Elaeis guineensis) Pressed Fiber Using Different Compressed Fluids. Journal of Supercritical Fluids, 112, 51-56. doi: 10.1016/j.supflu.2016.02.011 | |
dc.relation | /*ref*/Darvin, M. E., Fluhr, J. W., Meinke, M. C., Zastrow, L., Sterry, W. & Lademann, J. (2011). Topical Beta-Carotene Protects Against Infra-Red-Light-Induced Free Radicals. Experimental Dermatology, 20(2), 125-129. doi: 10.1111/j.1600-0625.2010.01191.x | |
dc.relation | /*ref*/Dini, I. & Laneri, S. (2019). Nutricosmetics: A Brief Overview. Phytotherapy Research, 1-10. doi: 10.1002/ptr.6494 | |
dc.relation | /*ref*/Dutta, A. & Dutta, S. K. (2003). Vitamin E and its Role in the Prevention of Atherosclerosis and Carcinogenesis: A Review. Journal of the American College of Nutrition, 22(4), 258-268. doi: 10.1080/07315724.2003.10719302 | |
dc.relation | /*ref*/Estiasih, T., Ahmadi, K., Widyaningsih, T. D., Maligan, J. M., Mubarok, A. Z., Zubaidah, E., … Puspitasari, R. (2013). Bioactive Compounds of Palm Fatty Acid Distillate (PFAD) from Several Palm Oil Refineries. Advance Journal of Food Science and Technology, 5(9), 1153-1159. doi: 10.19026/ajfst.5.3074 | |
dc.relation | /*ref*/Fattah, R. A., Mostafa, N. A., Mahmoud, M. S., & Abdelmoez, W. (2014). Recovery of Oil and Free Fatty Acids from Spent Bleaching Earth Using Sub-Critical Water Technology Supported with Kinetic and Thermodynamic Study. Advances in Bioscience and Biotechnology, 05(03), 261-272. doi: 10.4236/abb.2014.53033 | |
dc.relation | /*ref*/Fedepalma. (2020). Anuario estadístico 2020. Principales cifras de la agroindustria de la palma de aceite en Colombia y en el mundo, 238. Recuperado de https://publicaciones.fedepalma. org/index.php/anuario/article/view/13235/13024 | |
dc.relation | /*ref*/Fiedor, J. & Burda, K. (2014). Potential Role of Carotenoids as Antioxidants in Human Health and Disease. Nutrients, 6(2), 466-488. doi: 10.3390/nu6020466 | |
dc.relation | /*ref*/Gaforio, J. J., Sánchez-Quesada, C., López-Biedma, A., Ramírez-Tortose, M. del C. & Warleta, F. (2014). Molecular Aspects of Squalene and Implications for Olive Oil and the Mediterranean Diet. The Mediterranean Diet: An Evidence-Based Approach, 281-290. doi: 10.1016/B978-0-12-407849-9.00026-9 | |
dc.relation | /*ref*/García-Núñez, J. A., Ramírez-Contreras, N. E., Rodríguez, D. T., Silva-Lora, E., Frear, C. S., Stockle, C. & García-Perez, M. (2016). Evolution of Palm Oil Mills into Bio-Refineries: | |
dc.relation | /*ref*/Literature Review on Current and Potential Uses of Residual Biomass and Effluents. Resources, Conservation and Recycling, 110, 99-114. doi: 10.1016/j.resconrec.2016.03.022 | |
dc.relation | /*ref*/García-Núñez, J. A., Rodríguez, D. T., Fontanilla, C. A., Ramírez-Contreras, N. E., Silva Lora, E. E., Frear, C. S., … García-Perez, M. (2016). Evaluation of Alternatives for the Evolution of Palm Oil Mills into Biorefineries. Biomass and Bioenergy, 95, 310-329. doi: 10.1016/j. biombioe.2016.05.020 | |
dc.relation | /*ref*/Godswill, N.-N., Benoit Constant, L.-L.-N., Joseph Martin, B., Kingsley, T.-M., Jean Albert, D.-M., Simo Thierry, K., … Emmanuel, Y. (2016). Effects of Dietary Fatty Acids on Human Health: Focus on Palm oil from Elaeis guineensis Jacq. and Useful Recommendations. Food and Public Health, 6(3), 75-85. doi: 10.5923/j.fph.20160603.03 | |
dc.relation | /*ref*/González-Díaz, A., Pataquiva-Mateus, A. & García-Núñez, J. A. (2021a). Characterization and Response Surface Optimization Driven Ultrasonic Nanoemulsification of Oil With High Phytonutrient Concentration Recovered from Palm Oil Biodiesel Distillation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 612 (December 2020). doi: 1016/j. colsurfa.2020.125961 | |
dc.relation | /*ref*/González-Díaz, A., Pataquiva-Mateus, A. & García-Núñez, J. A. (2021b). Recovery of Palm Phytonutrients as a Potential Market for the By-Products Generated by Palm Oil Mills and Refineries-A Review. Food Bioscience, 41(February), 100916. doi: 10.1016/j. fbio.2021.100916 | |
dc.relation | /*ref*/Goon, J. A., Nor Azman, N. H. E., Abdul Ghani, S. M., Hamid, Z. & Wan Ngah, W. Z. (2017). Comparing Palm Oil Tocotrienol Rich Fraction with Α-Tocopherol Supplementation on Oxidative Stress in Healthy Older Adults. Clinical Nutrition ESPEN, 21, 1-12. doi: 10.1016/j.clnesp.2017.07.004 | |
dc.relation | /*ref*/Gorini, I., Iorio, S., Ciliberti, R., Licata, M. & Armocida, G. (2019). Olive Oil in Pharmacological and Cosmetic Traditions. Journal of Cosmetic Dermatology, (November 2018), 1-5. doi: 10.1111/jocd.12838 | |
dc.relation | /*ref*/Guan, S., Zhang, X.-L., Ge, D., Liu, T.-Q., Ma, X.-H. & Cui, Z.-F. (2011). Protocatechuic Acid Promotes the Neuronal Differentiation and Facilitates Survival of Phenotypes Differentiated from Cultured Neural Stem and Progenitor Cells. European Journal of Pharmacology, 670(2), 471-478. doi: 10.1016/j.ejphar.2011.09.020 | |
dc.relation | /*ref*/Gul, K., Tak, A., Singh, A. K., Singh, P., Yousuf, B. & Wani, A. A. (2015). Chemistry, Encapsulation, and Health Benefits of Β-Carotene-A Review. Cogent Food & Agriculture, 1(1), 1-12. doi: 10.1080/23311932.2015.1018696 | |
dc.relation | /*ref*/Han, N. M. & Choo, M. Y. (2015). Enhancing the Separation and Purification Efficiency of Palm Oil Carotenes Using Supercritical Fluid Chromatography. Journal of Oil Palm Research, 27(4), 387-392. | |
dc.relation | /*ref*/Han, N. M., May, C. Y., Ngan, M. A., Hock, C. C. & Ali Hashim, M. (2006a). Separation of Coenzyme Q10 in Palm Oil by Supercritical Fluid Chromatography. American Journal of Applied Sciences, 3(7), 1929-1932. doi: 10.3844/ajassp.2006.1929.1932 | |
dc.relation | /*ref*/Hanel, A. & Carlberg, C. (2020). Vitamin D and Evolution: Pharmacologic Implications. | |
dc.relation | /*ref*/Biochemical Pharmacology, 173. doi: 10.1016/j.bcp.2019.07.024 | |
dc.relation | /*ref*/Herrero, M., Mendiola, J. A., Cifuentes, A. & Ibáñez, E. (2010). Supercritical Fluid Extraction: Recent Advances and Applications. Journal of Chromatography A, 1217(16), 2495-2511. doi: 10.1016/j.chroma.2009.12.019 | |
dc.relation | /*ref*/Hosseini, S., Janaun, J. & Choong, T. S. Y. (2015). Feasibility of Honeycomb Monolith Supported Sugar Catalyst to Produce Biodiesel from Palm Fatty Acid Distillate (PFAD). Process Safety and Environmental Protection, 98, 285-295. doi: 10.1016/j.psep.2015.08.011 | |
dc.relation | /*ref*/Huang, Y. P. & Chang, J. I. (2010). Biodiesel Production from Residual Oils Recovered from Spent Bleaching Earth. Renewable Energy, 35(1), 269-274. doi: 10.1016/j.renene.2009.07.014 | |
dc.relation | /*ref*/Hudiyono, S. & Septian, A. (2012). Optimization Carotenoids Isolation of the Waste Crude Palm Oil Using α-Amylase, β-Amylase, and Cellulase. IOSR Journal of Applied Chemistry, 2(2), 07-12. doi: 10.9790/5736-0220712 | |
dc.relation | /*ref*/Johnston, T. P., Korolenko, T. A., Pirro, M. & Sahebkar, A. (2017). Preventing Cardiovascular Heart Disease: Promising Nutraceutical and Non-Nutraceutical Treatments for Cholesterol Management. Pharmacological Research, 120, 219-225. doi: 10.1016/j.phrs.2017.04.008 | |
dc.relation | /*ref*/Karmowski, J., Hintze, V., Kschonsek, J., Killenberg, M. & Böhm, V. (2015). Antioxidant Activities of Tocopherols/tocotrienols and Lipophilic Antioxidant Capacity of Wheat, Vegetable Oils, Milk and Milk Cream by Using Photochemiluminescence. Food Chemistry, 175, 593-600. doi: 10.1016/j.foodchem.2014.12.010 | |
dc.relation | /*ref*/Kaur, R. & Myrie, S. B. (2020). Association of Dietary Phytosterols with Cardiovascular Disease Biomarkers in Humans. Lipids, 55(6), 569-584. doi: 10.1002/lipd.12262 | |
dc.relation | /*ref*/Kheang, L. S., Foon, C. S., May, C. Y. & Ngan, M. A. (2006). A Study of Residual Oils Recovered from Spent Bleaching Earth : Their Characteristics and Applications Loh Soh Kheang , Cheng Sit Foon , Choo Yuen May and Ma Ah Ngan. American Journal of Applied Sciences, 3(10), 2063-2067. doi: 10.3844/ajassp.2006.2063.2067 | |
dc.relation | /*ref*/Kim, J. H., Kim, C. N. & Kang, D. W. (2019). Squalene Epoxidase Correlates E-Cadherin Expression and Overall Survival in Colorectal Cancer Patients: The Impact on Prognosis and Correlation to Clinicopathologic Features. Journal of Clinical Medicine, 8(5), 632. doi: 10.3390/jcm8050632 | |
dc.relation | /*ref*/Kotelevets, L., Chastre, E., Caron, J., Mougin, J., Bastian, G., Pineau, A., … Couvreur, P. (2017). A Squalene-Based Nanomedicine for Oral Treatment of Colon Cancer. Cancer Research, 77(11), 2964-2975. doi: 10.1158/0008-5472.CAN-16-1741 | |
dc.relation | /*ref*/Koushki, M., Nahidi, M. & Cheraghali, F. (2015). Physico-Chemical Properties, Fatty Acid Profile and Nutrition in Palm Oil Mohammadreza. Journal of Paramedical Sciences (JPS), 6(3), 117-134. doi: 10.22037/jps.v6i3.9772 | |
dc.relation | /*ref*/Liochev, S. I. (2013). Reactive Oxygen Species and the Free Radical Theory of Aging. Free Radical Biology and Medicine, 60, 1-4. doi: 10.1016/j.freeradbiomed.2013.02.011 | |
dc.relation | /*ref*/Mondul, A. M., Sampson, J. N., Moore, S. C., Weinstein, S. J., Evans, A. M., Karoly, E. D., … Albanes, D. (2013). Metabolomic Profile of Response to Supplementation with Β-Carotene in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study. American Journal of Clinical Nutrition, 98(2), 488-493. doi: 10.3945/ajcn.113.062778 | |
dc.relation | /*ref*/Musa, I., Khaza’ai, H., Abdul Mutalib, M. S., Yusuf, F., Sanusi, J. & Chang, S. K. (2017). Effects of Oil Palm Tocotrienol Rich Fraction on the Viability and Morphology of Astrocytes Injured with Glutamate. Food Bioscience, 20, 168-177. doi: 10.1016/j.fbio.2017.10.005 | |
dc.relation | /*ref*/NarayanBhilwade,H.,Tatewaki,N.,Nishida,H.&Konishi,T.(2010).SqualeneasNovelFoodFactor. Current Pharmaceutical Biotechnology, 11(8), 875-880. doi: 10.2174/138920110793262088 | |
dc.relation | /*ref*/Nimse, S. B. & Pal, D. (2015). Free Radicals, Natural Antioxidants, and Their Reaction Mechanisms. RSC Advances, 5(35), 27986-28006. doi: 10.1039/c4ra13315c | |
dc.relation | /*ref*/Nuno M. F. S. A., Cerquera, E. F., Oliveira, D. S., Gesto, D. S.-M., Cátia Moreira, H. N., Moorthy, M. J. R. & Fernandes, P. A. (2016). Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry, 55(39), 5483-5506. doi: 10.1021/acs.biochem.6b00342 | |
dc.relation | /*ref*/Nur Sulihatimarsyila, A. W., Lau, H. L. N., Nabilah, K. M. & Nur Azreena, I. (2019). Refining Process for Production of Refined Palm-Pressed Fibre Oil. Industrial Crops and Products, | |
dc.relation | /*ref*/129(November 2018), 488-494. doi: 10.1016/j.indcrop.2018.12.034 | |
dc.relation | /*ref*/Ofori-Boateng, C. & Lee, K. T. (2013). Sustainable Utilization of Oil Palm Wastes for Bioactive Phytochemicals for the Benefit of the Oil Palm and Nutraceutical Industries. Phytochemistry Reviews, 12(1), 173-190. doi: 10.1007/s11101-013-9270-z | |
dc.relation | /*ref*/Ou, S. & Kwok, K. C. (2004). Ferulic Acid: Pharmaceutical Functions, Preparation and Applications in Foods. Journal of the Science of Food and Agriculture, 84(11), 1261-1269. doi: 10.1002/jsfa.1873 | |
dc.relation | /*ref*/Parreiras, P. M., Vieira Nogueira, J. A., Rodrigues da Cunha, L., Passos, M. C., Gomes, N. R., Breguez, G. S., … Menezes, C. C. (2020). Effect of Thermosonication on Microorganisms, the Antioxidant Activity and the Retinol Level of Human Milk. Food Control, 113, 107172. doi: 10.1016/j.foodcont.2020.107172 | |
dc.relation | /*ref*/Peh, H. Y., Tan, W. S. D., Liao, W. & Wong, W. S. F. (2016). Vitamin E Therapy Beyond Cancer: Tocopherol Versus Tocotrienol. Pharmacology and Therapeutics, 162, 152-169. doi: 10.1016/j.pharmthera.2015.12.003 Associate Editor: Y. Zhang | |
dc.relation | /*ref*/Pham, D. M., Boussouira, B., Moyal, D. & Nguyen, Q. L. (2015). Oxidization of Squalene, a Human Skin Lipid: A New and Reliable Marker of Environmental Pollution Studies. International Journal of Cosmetic Science, 37(4), 357-365. doi: 10.1111/ics.12208 | |
dc.relation | /*ref*/Plat, J., Baumgartner, S. & Mensink, R. P. (2015). Mechanisms Underlying the Health Benefits of Plant Sterol and Stanol Ester Consumption. Journal of AOAC International, 98(3), 697-700. doi: 10.5740/jaoacint.SGEPlat | |
dc.relation | /*ref*/Pleanjai, S. & Gheewala, S. H. (2009). Full Chain Energy Analysis of Biodiesel Production from Palm Oil in Thailand. Applied Energy, 86(SUPPL. 1), S209-S214. doi: 10.1016/j. apenergy.2009.05.013 | |
dc.relation | /*ref*/Posada, L. R., Shi, J., Kakuda, Y. & Xue, S. J. (2007). Extraction of Tocotrienols from Palm Fatty Acid Distillates Using Molecular Distillation. Separation and Purification Technology, 57(2), 220-229. doi: 10.1016/j.seppur.2007.04.016 | |
dc.relation | /*ref*/Prabhu, A. V., Luu, W., Sharpe, L. J. & Brown, A. J. (2016). Cholesterol-Mediated Degradation Of 7-Dehydrocholesterol Reductase Switches the Balance from Cholesterol to Vitamin D Synthesis. JournalofBiologicalChemistry, 291(16), 8363-8376. doi: 10.1074/jbc.M115.699546 | |
dc.relation | /*ref*/Putra, N. R., Wibobo, A. G., Machmudah, S. & Winardi, S. (2019). Recovery Of Valuable Compounds From Palm-Pressed Fiber by Using Supercritical CO2 Assisted by Ethanol: Modeling and Optimization. Separation Science and Technology, 00(00), 1-14. doi: 10.1080/01496395.2019.1672740 | |
dc.relation | /*ref*/Ramírez, N., Arévalo S, Á. & García, J. A. (2015). Inventario de la biomasa disponible en plantas de beneficio para su aprovechamiento y caracterización fisicoquímica de la tusa en Colombia. Palmas, 36(4), 41-54. | |
dc.relation | /*ref*/Randjelović, P., Veljković, S., Stojiljković, N., Sokolović, D., Ilić, I., Laketić, D., … Randjelović, N. (2015). The Beneficial Biological Properties of Salicylic Acid. Acta Facultatis Medicae Naissensis, 32(4), 259-265. doi: 10.1515/afmnai-2015-0026 | |
dc.relation | /*ref*/Ras, R. T., Koppenol, W. P., Garczarek, U., Otten-Hofman, A., Fuchs, D., Wagner, F. & Trautwein, E. A. (2016). Increases in Plasma Plant Sterols Stabilize within Four Weeks of Plant Sterol Intake and are Independent of Cholesterol Metabolism. Nutrition, Metabolism and Cardiovascular Diseases, 26(4), 302-309. doi: 10.1016/j.numecd.2015.11.007 | |
dc.relation | /*ref*/Ribeiro, D., Freitas, M., Silva, A. M. S., Carvalho, F. & Fernandes, E. (2018). Antioxidant and Pro-Oxidant Activities of Carotenoids and their Oxidation Products. Food and Chemical Toxicology, 120, 681-699. doi: 10.1016/j.fct.2018.07.060 | |
dc.relation | /*ref*/Ricaurte, L., Perea-Flores, M. D. J., Martínez, A. & Quintanilla-Carvajal, M. X. (2016). Production of High-Oleic Palm Oil Nanoemulsions by High-Shear Homogenization (Microfluidization). Innovative Food Science and Emerging Technologies, 35(March), 75-85. doi: 10.1016/j.ifset.2016.04.004 | |
dc.relation | /*ref*/Rodríguez, J. C., Gómez, D., Pacetti, D., Núnnez, O., Gagliardi, R., Frega, N. G., … Lucci, P. (2016). Effects of the Fruit Ripening Stage on Antioxidant Capacity, Total Phenolics, and Polyphenolic Composition of Crude Palm Oil from Interspecific Hybrid Elaeis oleifera × Elaeis guineensis. Journal of Agricultural and Food Chemistry, 64(4), 852-859. doi: 10.1021/ acs.jafc.5b04990 | |
dc.relation | /*ref*/Ronco, A. L. & De Stéfani, E. (2013). Squalene: A Multi-Task Link in the Crossroads of Cancer and Aging. Functional Foods in Health and Disease, 3(12), 462. doi: 10.31989/ffhd.v3i12.30 | |
dc.relation | /*ref*/Sampaio, K. A., Ayala, J. V., Van Hoed, V., Monteiro, S., Ceriani, R., Verhé, R. & Meirelles, A. J. A. (2017). Impact of Crude Oil Quality on the Refining Conditions and Composition of Nutraceuticals in Refined Palm Oil. Journal of Food Science, 82(8), 1842-1850. doi: 10.1111/1750-3841.13805 | |
dc.relation | /*ref*/Sangar, S. K., Lan, C. S., Razali, S. M., Farabi, M. S. A. & Taufiq-Yap, Y. H. (2019). Methyl Ester Production from Palm Fatty Acid Distillate (PFAD) Using Sulfonated Cow Dung-Derived Carbon-Based Solid Acid Catalyst. Energy Conversion and Management, 196, 1306-1315. doi: 10.1016/j.enconman.2019.06.073 | |
dc.relation | /*ref*/Sangkharak, K., Pichid, N., Yunu, T. & Kingman, P. (2016). Separation of Carotenes and Vitamin E from Palm Oil Mill Effluent Using Silica From Agricultural Waste as an Adsorbent. Walailak Journal of Science and Technology, 13(11), 939-947. doi:10.14456/ vol13iss12pp%p | |
dc.relation | /*ref*/Silva, L., Bermúdez, A., Mojica, P., Cuellar, S. & Medina, C. (2017). Fitonutrientes derivados de la palma africana, sacha inchi y macadamia. Bogotá. Recuperado de http://www.sic.gov. co/boletines-tecnologicos/fitonutrientes-derivados-de-la-palma-africana-sacha-inchi-y- macadamia | |
dc.relation | /*ref*/Šošić-Jurjević, B., Lütjohann, D., Jarić, I., Miler, M., Vojnović Milutinović, D., Filipović, B., … Milošević, V. (2017). Effects of Age and Soybean Isoflavones on Hepatic Cholesterol Metabolism and Thyroid Hormone Availability in Acyclic Female Rats. Experimental Gerontology, 92(October), 74-81. doi: 10.1016/j.exger.2017.03.016 | |
dc.relation | /*ref*/Stahl, W., & Sies, H. (2012). β-Carotene and other carotenoids in protection from sunlight. American Journal of Clinical Nutrition, 96(5), 1179-1184. https://doi.org/10.3945/ | |
dc.relation | /*ref*/ajcn.112.034819 | |
dc.relation | /*ref*/Sumi, E. S., Anandan, R., Rajesh, R., Ravishankar, C. N. & Mathew, S. (2018). Nutraceutical and Therapeutic Applications of Squalene. Fishery Technology, 55, 229-237. | |
dc.relation | /*ref*/Tai, A., Sawano, T. & Ito, H. (2012). Antioxidative Properties of Vanillic Acid Esters in Multiple Antioxidant Assays. Bioscience, Biotechnology and Biochemistry, 76(2), 314-318. doi: 10.1271/bbb.110700 | |
dc.relation | /*ref*/Tan, Y. A., Muhammad, H., Hashim, Z., Subramaniam, V., Wei, P. C., Let, C. C., … May, C. Y. (2010). Life Cycle Assessment of Refined Palm Oil Production and Fractionation (part 4 ). Journal of Oil Palm Research, 22(December), 913-926. | |
dc.relation | /*ref*/Tanaka, T., Tanaka, T. & Tanaka, M. (2011). Potential Cancer Chemopreventive Activity of Protocatechuic Acid. Journal of Experimental & Clinical Medicine, 3(1), 27-33. doi: 10.1016/j.jecm.2010.12.005 | |
dc.relation | /*ref*/Tay, B., Ping, Y. & Yusof, M. (2009). Characteristics and Properties of Fatty Acid Distillates from Palm Oil. Oil Palm Bulletin, 59(November), 5-11. | |
dc.relation | /*ref*/Teixeira, C. B., Macedo, G. A., Macedo, J. A., da Silva, L. H. M. & Rodrigues, A. M. da C. (2013). Simultaneous Extraction of Oil and Antioxidant Compounds from Oil Palm Fruit (Elaeis guineensis) by an Aqueous Enzymatic Process. Bioresource Technology, 129, 575-581. doi: 10.1016/j.biortech.2012.11.057 | |
dc.relation | /*ref*/Teo, K. T., Hassan, A. & Gan, S. N. (2018). UV-Curable Urethane Acrylate Resin from Palm Fatty Acid Distillate. Polymers, 10(12), 1-16. doi: 10.3390/polym10121374 | |
dc.relation | /*ref*/Tozer, S., O’Mahony, C., Hannah, J., O’Brien, J., Kelly, S., Kosemund-Meynen, K. & Alexander- White, C. (2019). Aggregate Exposure Modelling of Vitamin A from Cosmetic Products, Diet and Food Supplements. Food and Chemical Toxicology, 131(January), 110549. doi: 10.1016/j.fct.2019.05.057 | |
dc.relation | /*ref*/Uddin, M. S., Sarker, M. Z. I., Ferdosh, S., Akanda, M. J. H., Easmin, M. S., Bt Shamsudin, S. H. & Yunus, K. Bin. (2015). Phytosterols and their Extraction from Various Plant Matrices Using Supercritical Carbon Dioxide: A Review. Journal of the Science of Food and Agriculture, 95(7), 1385-1394. doi: 10.1002/jsfa.6833 | |
dc.relation | /*ref*/USDA-FAS. (2020). Palm Oil Global Production. Recuperado de https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=4243000# | |
dc.relation | /*ref*/Vázquez-Vidal, I. & Jones, P. J. H. (2020). Nutrigenetics and Blood Cholesterol Levels in Response to Plant Sterols. En Principles of Nutrigenetics and Nutrigenomics (Vol. 2, pp. 227-230). Elsevier Inc. doi: 10.1016/b978-0-12-804572-5.00029-x | |
dc.relation | /*ref*/Wei, G., Guan, Y., Yin, Y., Duan, J., Zhou, D., Zhu, Y., … Wen, A. (2013). Anti-inflammatory Effect of Protocatechuic Aldehyde on Myocardial Ischemia/Reperfusion Injury In Vivo and In Vitro. Inflammation, 36(3), 592-602. doi: 10.1007/s10753-012-9581-z | |
dc.relation | /*ref*/Weingärtner, O., Bogeski, I., Kummerow, C., Schirmer, S. H., Husche, C., Vanmierlo, T., … Laufs, U. (2017). Plant Sterol Ester Diet Supplementation Increases Serum Plant Sterols and Markers of Cholesterol Synthesis, but Has No Effect on Total Cholesterol Levels. Journal of Steroid Biochemistry and Molecular Biology, 169(July 2016), 219-225. doi: 10.1016/j. jsbmb.2016.07.016 | |
dc.relation | /*ref*/Wu,L.,Guo,X.,Wang,W.,Medeiros,D.M.,Clarke,S.L.,Lucas,E.A.,…Lin,D.(2016).Molecular Aspects Of Β, Β-Carotene-9′, 10′-Oxygenase 2 in Carotenoid Metabolism and Diseases. Experimental Biology and Medicine, 241(17), 1879-1887. doi: 10.1177/1535370216657900 | |
dc.relation | /*ref*/Wu,T.Y.,Mohammad,A.W.,Jahim,J.M.&Anuar,N.(2009). AHolisticApproachtoManaging Palm Oil Mill Effluent (POME): Biotechnological Advances in the Sustainable Reuse of POME. Biotechnology Advances, 27(1), 40-52. doi: 10.1016/j.biotechadv.2008.08.005 | |
dc.relation | /*ref*/Yin, M. & Chao, C. (2008). Anti-Campylobacter, Anti-Aerobic, and Anti-Oxidative Effects of Roselle Calyx Extract and Protocatechuic Acid in Ground Beef. International Journal of Food Microbiology, 127(1), 73-77. doi: 10.1016/j.ijfoodmicro.2008.06.002 | |
dc.relation | /*ref*/Zerbinati, C. & Iuliano, L. (2017). Cholesterol and Related Sterols Autoxidation. Free Radical Biology and Medicine, 111, 151-155. https://doi.org/10.1016/j.freeradbiomed.2017.04.013 | |
dc.relation | /*ref*/Zouboulis, C. C., Ganceviciene, R., Liakou, A. I., Theodoridis, A., Elewa, R. & Makrantonaki, E. (2019). Aesthetic Aspects of Skin Aging, Prevention, and Local Treatment. Clinics in Dermatology, 37(4), 365-372. doi: 10.1016/j.clindermatol.2019.04.002 | |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0 | es-ES |
dc.source | Palmas; Vol. 42 Núm. 3 (2021); 62-82 | es-ES |
dc.source | 2744-8266 | |
dc.source | 0121-2923 | |
dc.subject | Phytochemicals | en-US |
dc.subject | Residual oils | en-US |
dc.subject | Vitamin E | en-US |
dc.subject | Carotenoids | en-US |
dc.subject | Antioxidants | en-US |
dc.subject | By-products | en-US |
dc.subject | Fitoquímicos | es-ES |
dc.subject | Aceites residuales | es-ES |
dc.subject | Vitamina E | es-ES |
dc.subject | Carotenoides | es-ES |
dc.subject | Antioxidantes | es-ES |
dc.subject | Subproductos | es-ES |
dc.title | By-products of the Oil Palm Production Chain as a Potential Source of Biologically Active Phytochemicals | en-US |
dc.title | Subproductos de la cadena productiva de la palma de aceite como fuente potencial de fitoquímicos biológicamente activos | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |