Show simple item record

dc.creatorMohamed Shariff , Abdul Rashid
dc.date2019-12-19
dc.date.accessioned2025-03-13T22:29:42Z
dc.date.available2025-03-13T22:29:42Z
dc.identifier.urihttps://repositorio.fedepalma.org/handle/123456789/145407
dc.descriptionThe present method used in determining oil palm parameters required chemical analysis which is destructive, time consuming and expensive. Hence, the purpose of this research is to obtain a non- destructive, easier and faster method in determining oil palm parameters to replace current method. At the same time, to obtain a method to directly distinguish the grades of FFB. Weka software was used to analyze data. Linear regression classification and SMO classification with cross validation of 10 and percentage split of 66% were applied. As a result, combination of Sensor 3(Red Emission, Red Detector), Sensor 2(Dred Emission, Dred Detector), Sensor 2(Fre Emission, Fre Detector), Sensor 4(Blu Emission, Blu Detector) and Sensor 4(NIR Emission, NIR Detector) showed the best overall accuracy to distinguish ripeness of fresh fruit bunch with 79.8% over ripe, 69.4% ripe and 93.3% under ripe. The mean average ROC value is 80.6%. On the other hand, Sensor 2(Fre Emission, Fre Detector) showed the best average accuracy in measuring different parameters values with 59.81% in determining oil to bunch ratio, 73% in determining oil to dry pericarp ratio, 62.57% in determining deterioration of bleaching index, 71.22% in determining carotene, 48.68% in determining peroxide value, 35.76% in determining free fatty acids. Accuracy values to detect free fatty acids increases to 70.94% with addition of average temperature as sensor.en-US
dc.descriptionEl método que se utiliza actualmente para determinar los parámetros del aceite de palma requiere un análisis químico que es destructivo, lento y costoso. Por lo tanto, el objetivo de esta investigación es obtener uno no destructivo, más fácil y más rápido, y reemplazar el método actual. Al mismo tiempo, establecer un procedimiento para distinguir directamente los grados de madurez de RFF. Se utilizó el software Weka para analizar los datos. Se aplicó una clasificación por regresión lineal y una SMO con validación cruzada de 10 y porcentaje dividido de 66 %. Como resultado, una combinación del sensor 3 (Emisión Red, Detector Red), sensor 2 (Emisión Dred, Detector Dred), sensor 2 (Emisión Fre, Detector Fre), sensor 4 (Emisión Blu, Detector Blu) y sensor 4 (Emisión NIR, Detector NIR) mostró la mejor precisión general para distinguir la madurez de racimos de fruta fresca con 79,8 % para sobremaduro, 69,4 % para maduro y 93,3 % para poco maduro (inmaduro). El valor promedio de ROC fue de 80,6 %. Por otra parte, el sensor 2 (Emisión Fre, Detector Fre) mostró la mejor precisión promedio para medir valores de diferentes parámetros, con 59,81 % al determinar la proporción de aceite por racimo, 73 % en la relación de aceite a pericarpio seco, 62,57 % en el índice de deterioro del blanqueo (DOBI), 71,22 % en carotenos, 48,68 % en el valor de peróxido y 35,76 % en los ácidos grasos libres (AGL). Los valores de precisión para la detección de estos últimos aumentaron al 70,94 % con la adición de temperatura promedio como sensor.  es-ES
dc.formatapplication/pdf
dc.languagespa
dc.publisherFedepalmaes-ES
dc.relationhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/13076/12893
dc.relation/*ref*/Abdullah, M.G. (2001). Stepwise Discriminant Analysis for Colour Grading of Oil Palm Using Machine
dc.relation/*ref*/VisionSystem.FoodandBioproductsProcessing79(4).doi:10.1205/096030801753252298
dc.relation/*ref*/Alfatni, M.S., Shariff, A.R., Shafri, H.Z., Saaed, O.M., and Eshanta, O.M. (2008). Oil Palm Fruit Bunch
dc.relation/*ref*/Grading System Using Red, Green and Blue Digital Number. Journal of Applied Sciences
dc.relation/*ref*/8(8): 1444-1452. doi:10.3923/jas.2008.1444.1452
dc.relation/*ref*/Giovenzana, V., Beghi, R., Civelli, R., and Guidetti, R. (2015). Optical techniques for rapid quality monitoring along minimally processed fruit and vegetable chain. Trends in Food Science & Technology 46(2): 331-338. doi:10.1016/j.tifs.2015.10.006
dc.relation/*ref*/Harun, N., Misron, N., Sidek, R., Aris, I., Ahmad, D., Wakiwaka, H., and Tashiro, K. (2013). Investiga- tions on a Novel Inductive Concept Frequency Technique for the Grading of Oil Palm Fresh Fruit Bunches. Sensors 13(2); 2254-2266. doi:10.3390/s130202254
dc.relation/*ref*/Ismail, W.I.W., Razali. M.H., Ramli, A.R., Sulaiman, M.N., and Harun, M.H.B. (2009). Development of
dc.relation/*ref*/Imaging Application for Oil Palm Fruit Maturity Prediction. Engineering e-Transaction 4(2):
dc.relation/*ref*/56-63.Karp, G., and Pruitt, N.L. (2010). Cell and molecular biology: Concepts and Experi- ments. In: G. Karp, and N.L. Pruitt, Cell and molecular biology: Concepts and Experiments (p. 212). Hoboken, NJ: John Wiley & Sons.
dc.relation/*ref*/Khan, M., and Quadri, S. (2012). Evaluating Various Learning Techniques for Efficiency. Internation- al Journal of Engineering and Advanced Technology 2(2): 326-331.
dc.relation/*ref*/Makky, M., and Soni, P. (2014). In situ quality assessment of intact oil palm fresh fruit bunches us- ing rapid portable non-contact and non-destructive approach. Journal of Food Engineering
dc.relation/*ref*/120; 248-259. doi:10.1016/j.jfoodeng.2013.08.011
dc.relation/*ref*/Makky, M., Soni, P., and Salokhe, V. (2014). Automatic non-destructive quality inspection system for oil palm fruits. International Agrophysics 28(3): 319-329. doi:10.2478/intag-2014-0022
dc.relation/*ref*/Sankaran, S., Shariff, A.R., Shafri, H.Z., Ehsani, R., Alfatni, M.S., and Hazir, M.A. (2012). Classifi- cation of oil palm fresh fruit bunches based on their maturity using portable four-band sensor system. Computers and Electronics in Agriculture 82: 55-60. doi:10.1016/j.com- pag.2011.12.010
dc.sourcePalmas; Vol. 40 Núm. Especial T (2019); 9-17es-ES
dc.source2744-8266
dc.subjectoil palm ripenesen-US
dc.subjectoil palm qualityen-US
dc.subjectvisible lighten-US
dc.subjectNIRen-US
dc.subjecttemperatureen-US
dc.subjectmadurez de la palma de aceitees-ES
dc.subjectcalidad del aceite de palmaes-ES
dc.subjectluz visiblees-ES
dc.subjectNIRes-ES
dc.subjecttemperaturaes-ES
dc.titleOil Palm Ripeness Detector (OPRID) and Non-Destructive Thermal Method of Palm Oil Quality Estimationen-US
dc.titleDetector de madurez en palma de aceite (OPRID) y método térmico no destructivo para estimar la calidad del aceite de palmaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.identifier.urlhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/13076


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record