| dc.creator | López Ramírez, Gina | |
| dc.creator | S., Baena | |
| dc.date | 2019-12-19 | |
| dc.date.accessioned | 2025-03-13T22:29:52Z | |
| dc.date.available | 2025-03-13T22:29:52Z | |
| dc.identifier.uri | https://repositorio.fedepalma.org/handle/123456789/145435 | |
| dc.description | Transesterification of edible oils and fats is an option for producing commercial fats free of trans fatty acids, which may result in improved physical and nutritional properties of raw materials or interme- diate products of oil palm processing. Transesterification consists of the redistribution of fatty acids within triacylglycerides that takes place inside the molecule itself or in different molecules. The process is carried out by lipolytic enzymes which act as biologic catalysts that hydrolise the triacylglycerol ester bond in the water/oil interface, releasing fatty acids, glycerol, monoacylglycerol and diacylglycerol. They also act as catalysts of water-insoluble esters through interesterification, alcoholysis and acidolysis reactions. Lipolytic enzymes are a “clean technolog” which may be an alternative to partial hydrogenation, the process used to transform oils into solid or semi-solid fats through hydrogen addition, the result of which are oils or fats with high concentration of trans fatty acids that may be harmful to human health mainly because of the their potential to elevate LDL and triglyceride levels. Finally, the palm oil sector is working on the development of lipolytic enzymes, which appear to be highly promising as a technology for enhancing oils and fats in a sector that is increasingly demanding in terms of quality and nutritional benefits.
| en-US |
| dc.description | La transesterificación de aceites y grasas comestibles es una alternativa de producción de grasas comerciales libres de ácidos grasos tipo trans, que puede repercutir en la mejora de las propiedades físicas y nutricionales de materias primas o productos intermediarios del procesamiento del aceite de palma. Es una redistribución de ácidos grasos entre los triacilglicéridos, que tiene lugar dentro de la misma molécula o en diferentes. Este proceso lo llevan a cabo las enzimas lipolíticas, catalizadores biológicos que hidrolizan el enlace éster del triacilglicerol en la interfase agua/aceite, liberando áci- dos grasos, glicerol, monoacilglicerol y diacilglicerol. También catalizan ésteres insolubles en agua a través de reacciones de interesterificación, alcohólisis y acidólisis. El uso de las enzimas lipolíticas es una “tecnología limpia”, que puede ser alterna al proceso de hidrogenación parcial empleado para que los aceites se transformen en grasas semisólidas o sólidas, mediante la adición de hidrógeno, dejando como resultado aceites o grasas con altas concentraciones de ácidos grasos tipo trans, nocivos para la salud, principalmente porque pueden elevar el colesterol LDL y los triglicéridos. Esta tecnología, que en el sector del aceite de palma está en desarrollo, muestra alto potencial de mejoramiento de los aceites y las grasas en un mercado cada vez más exigente en calidad y beneficios nutricionales. | es-ES |
| dc.format | application/pdf | |
| dc.language | spa | |
| dc.publisher | Fedepalma | es-ES |
| dc.relation | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13112/12923 | |
| dc.relation | /*ref*/Krüger, A. Schäfers, C., Schröder, C., & Antranikian, G. (2018). Towards a sustainable biobased industry-Highlighting the impact of extremophiles. New Biotechnology, 40, 144-153. | |
| dc.relation | /*ref*/CE-FAO. (2011). Guía práctica: Una introducción a los conceptos básicos de la seguridad alimentaria. Recuperado de http://www.fao.org/docrep/014/al936s/al936s00.pdf | |
| dc.relation | /*ref*/Sarmah, N., Revathi, D., Sheelu, G., Yamuna Rani, K., Sridhar, S., Mehtab, V, & Sumana, C. (2018). Recent advances on sources and industrial applications of lipases. Biotechnology Progress, 34, 5-28. | |
| dc.relation | /*ref*/Daiha, K. de G., Angeli, R., de Oliveira, S. D., & Almeida, R. V. (2015). Are Lipases Still Important Biocatalysts? A Study of Scientific Publications and Patents for Technological Forecasting. PLoS One 10(6). | |
| dc.relation | /*ref*/Kapoor, M., & Gupta, M. N. (2012). Lipase promiscuity and its biochemical applications. Process Biochemistry, 47(4), 555-569. | |
| dc.relation | /*ref*/Sandoval, G., Casas-Godoy, L., Duquesne, S., Bordes, F., & Marty, A. (2012). Lipases: An Overview, p 3-30, Lipases and Phospholipases, vol 861. Humana Press. | |
| dc.relation | /*ref*/Sánchez-Otero, M. G., Quintana-Castro, R., Mora-González, P. C, Márquez-Molina, O., Valerio-Alfaro, G., & Oliart-Ros, R. (2010). Enzymatic reactions and synthesis of n-butyl caproate: esterifi- cation, transesterification and aminolysis using a recombinant lipase from Geobacillus thermo- leovorans CCR11. Environmental Technology, 31,1101-1106. | |
| dc.relation | /*ref*/Hult, K., & Berglund, P. (2007). Enzyme promiscuity: mechanism and applications. Trends in Biotch chnology, 25(5),231-238. | |
| dc.relation | /*ref*/Brabcova, J., Zarevucka, M., & Mackova, M. (2010). Differences in hydrolytic abilities of two crude lipases from Geotrichum candidum 4013. Yeast, 27,1029-1038. | |
| dc.relation | /*ref*/López, G., Chow, J., Bongen, P., Lauinger, B., Pietruszka, J., Streit, W.R., & Baena, S. (2014). A novel thermoalkalostable esterase from Acidicaldus sp. strain USBA-GBX-499 with enantioselectivity isolated from an acidic hot springs of Colombian Andes. Applied Microbiology Biotechnology, | |
| dc.relation | /*ref*/98(20),8603-16. | |
| dc.relation | /*ref*/López, G., Ruiz, M., Vera, R., Loaiza, A., & Baena, S. (2015). Desarrollo de reacciones de transformación de oleorresinas de coníferas, triacilglicéridos, ácidos grasos usando enzimas lipolíticas para la generación de materias primas intermediarias en el sector industrial. Pontificia Universidad Javeriana, Informe técnico, p 157. | |
| dc.relation | /*ref*/Angajala, G., Pavan, P., & Subashini, R. (2016). Lipases: An overview of its current challenges and prospectives in the revolution of biocatalysis. Biocatalysis and Agricultural Biotechnology, 7,257- | |
| dc.relation | /*ref*/ | |
| dc.relation | /*ref*/Lajis, A. F. B. (2018). Realm of Thermoalkaline Lipases in Bioprocess Commodities. Journal of Lipids 2018, 22. | |
| dc.relation | /*ref*/Rodrigues, R. C., & Fernandez-Lafuente, R. (2010). Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification. Journal of Molecular Catalysis B: Enzymatic, 66 (1-2),15-32. | |
| dc.relation | /*ref*/Imran, M., & Nadeem, M. (2015). Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends. Lipids in Health and Disease, 14,138. | |
| dc.relation | /*ref*/Speranza, P., & Macedo, G. A. (2012). Lipase-mediated production of specific lipids with improved biological and physicochemical properties. Process Biochemistry, 47(12),1699-1706. | |
| dc.relation | /*ref*/Senanayake, S. P. J. N., & Shahidi, F. (2005). Modification of Fats and Oils via Chemical and Enzymatic Methods, Bailey's Industrial Oil and Fat Products. F. Shahidi (Ed.). | |
| dc.relation | /*ref*/Kadhum, A. A., & Shamma, M. N. (2017). Edible lipids modification processes: A review. Crittical | |
| dc.relation | /*ref*/Reviews in Food Science and Nutrition, 57(1),48-58. | |
| dc.relation | /*ref*/Sellami, M., Ghamgui, H., Frikha, F., Gargouri, Y., & Miled, N. (2012). Enzymatic transesterification of palm stearin and olein blends to produce zero-trans margarine fat. BMC Biotechnology, 12,48. | |
| dc.relation | /*ref*/Morselli Ribeiro, M. D. M., Ming, C. C., Silvestre, I. M., Grimaldi, R., & Gonçalves, L. A .G. (2017). Comparison between enzymatic and chemical interesterification of high oleic sunflower oil and fully hydrogenated soybean oil. European Journal of Lipid Science and Technology, 119,1500473. | |
| dc.relation | /*ref*/Zhang, J. H., Jiang, Y. Y., Lin, Y., Sun, Y. F., Zheng, S. P., & Han, S. Y. (2013). Structure-guided modification of Rhizomucor miehei lipase for production of structured lipids. PLoS One, 8(7),e67892. | |
| dc.relation | /*ref*/Speranza, P., Ribeiro A. P. B., & Macedo, G.A. (2016). Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area. Journal of Biotechnology, 218,13-20. | |
| dc.source | Palmas; Vol. 40 Núm. Especial T (2019); 235-243 | es-ES |
| dc.source | 2744-8266 | |
| dc.subject | Lipolytic enzymes | en-US |
| dc.subject | transesterification | en-US |
| dc.subject | lipases | en-US |
| dc.subject | trans fat free | en-US |
| dc.subject | enzimas lipolíticas | es-ES |
| dc.subject | transesterificación | es-ES |
| dc.subject | lipasas | es-ES |
| dc.subject | libre de grasas trans | es-ES |
| dc.title | Enzymatic Palm Oil Transesterification as an Option for the Production of Trans Fat Free Foods | en-US |
| dc.title | Transesterificación enzimática de aceite de palma como alternativa para producción de alimentos libres de grasas trans | es-ES |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |
| dc.identifier.url | https://publicaciones.fedepalma.org/index.php/palmas/article/view/13112 | |