dc.creator | Munar Flórez, David Arturo | |
dc.creator | Varón Cárdenas, Darlis Adriana | |
dc.creator | Ramírez Contreras, Nidia Elizabeth | |
dc.creator | García-Núñez, Jesús Alberto | |
dc.date | 2024-09-19 | |
dc.date.accessioned | 2025-03-14T11:23:38Z | |
dc.date.available | 2025-03-14T11:23:38Z | |
dc.identifier | https://publicaciones.fedepalma.org/index.php/palmas/article/view/14268 | |
dc.identifier | 10.56866/01212923.14268 | |
dc.identifier.uri | https://repositorio.fedepalma.org/handle/123456789/145763 | |
dc.description | Este estudio investigó los efectos de las condiciones de producción sobre la capacidad de adsorción de amonio y fosfato de biocarbón producido a partir de cuesco de palma de aceite. El biocarbón se preparó a tres temperaturas de pirólisis (350, 650 y 750 °C), bajo tres condiciones de activación (sin oxidación, con oxidación parcial a 250 °C y con activación química con K2CO3) y mediante la utilización de tres métodos (sin lavado, con lavado ácido y con lavado con agua caliente). | es-ES |
dc.format | application/pdf | |
dc.format | text/xml | |
dc.language | spa | |
dc.publisher | Fedepalma | es-ES |
dc.relation | https://publicaciones.fedepalma.org/index.php/palmas/article/view/14268/14211 | |
dc.relation | https://publicaciones.fedepalma.org/index.php/palmas/article/view/14268/14231 | |
dc.relation | /*ref*/Agencia de Protección Ambiental de los Estados Unidos. Preventing Eutrophication: Scientific Support for Dual Nutrient Criteria. 2015; 1-6. | |
dc.relation | /*ref*/S. N. H. Abu Bakar, H. Abu Hasan, A. W. Mohammad, S. R. S. Abdullah, R. Ngteni, K. M. M. Yusof. Performance of a laboratory-scale moving bed biofilm reactor (MBBR) and its microbial diversity in palm oil mill effluent (POME) treatment. Process Saf. Environ. Prot. 2020; 142: 325-335, https://doi.org/10.1016/j.psep.2020.05.004. | |
dc.relation | /*ref*/Y. S. Wong, M. O. A. B. Kadir, T. T. Teng. Biological kinetics evaluation of anaerobic stabilization pond treatment of palm oil mill effluent. Bioresour. Technol. 2009; 100(21): 4969-4975. https://doi.org/10.1016/j.biortech.2009.04.074. | |
dc.relation | /*ref*/M. M. A. Aziz, K. A. Kassim, M. ElSergany, S. Anuar, M. E. Jorat, H. Yaacob, A. Ahsan, M. A. Imteaz, Arifuzzaman. Recent advances on palm oil mill effluent (POME) pretreatment and anaerobic reactor for sustainable biogas production. Renew. Sustain. Energy Rev. 2020; 119. https://doi.org/10.1016/j.rser.2019.109603. | |
dc.relation | /*ref*/N. E. Ramírez-Contreras, D. A. Munar-Flórez, J. A. García-Núñez, M. Mosquera-Montoya, A. P. C. Faaij. The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives. J. Clean. Prod. 2020; 258. https://doi.org/10.1016/j.jclepro.2020.120757. | |
dc.relation | /*ref*/Y. Cheau Chin, C. Yi Jing, L. Soh Kheang, S. Christina Vimala, S. Aik Chin, C. Mei Fong, C. Chien Lye, L. Lian Keong. Comparison of different industrial scale palm oil mill effluent anaerobic systems in degradation of organic contaminants and kinetic performance. J. Clean. Prod. 2020; 262. 10.1016/j.jclepro.2020.121361. | |
dc.relation | /*ref*/S. K. Loh, A. B. Nasrin, S. Mohamad Azri, B. Nurul Adela, N. Muzzammil, T. Daryl Jay, R. A. Stasha Eleanor, W. S. Lim, Y. M. Choo, M. Kaltschmitt. First Report on Malaysia’s experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme: Current and future perspectives. Renew. Sustain. Energy Rev. 2017; 74: 1257-1274, https://doi.org/10.1016/j.rser.2017.02.066. | |
dc.relation | /*ref*/Ministerio de Ambiente y Desarrollo Sostenible, Resolución 0631. 2015; 62. | |
dc.relation | /*ref*/N. E. Ramírez-Contreras, A. S. Silva-Ramírez, E. M. Garzón-Gonzáles, E. E. Yáñez Angarita. Boletín Técnico Nro. 30. Caracterización y manejo de subproductos del beneficio del fruto de palma de aceite. Centro de Investigación en Palma de Aceite Cenipalma. 2011. | |
dc.relation | /*ref*/J. A. García-Núñez, E. E. Yañez, A, M. Cárdenas. Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia. 2010. | |
dc.relation | /*ref*/D. Mohan, A. Sarswat, Y. S. Ok, C. U. Pittman Jr. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review. Bioresour. Technol. 2014; 160: 191-202. https://doi.org/10.1016/j.biortech.2014.01.120. | |
dc.relation | /*ref*/M. B. Ahmed, J. L. Zhou, H. H. Ngo, W. Guo, M. Chen. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016; 214: 836-851. https://doi.org/10.1016/j.biortech.2016.05.057. | |
dc.relation | /*ref*/F. Sulaiman, N. Abdullah. Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy. 2011; 36(5): 2352-2359. https://doi.org/10.1016/j.energy.2010.12.067 . | |
dc.relation | /*ref*/F. Abnisa, A. Arami-Niya, W. M. A. Wan Daud, J. N. Sahu, I. M. Noor. Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers. Manag. 2013; 76: 1073-1082. https://doi.org/10.1016/j.enconman.2013.08.038. | |
dc.relation | /*ref*/C. J. Booker, R. Bedmutha, T. Vogel, A. Gloor, R. Xu, L. Ferrante et al. Experimental investigations into the insecticidal, fungicidal, and bactericidal properties of pyrolysis bio-oil from tobacco leaves using a fluidized bed pilot plant. Ind. Eng. Chem. Res. 2010; 49: 10074-10079. 10.1021/ie100329z. | |
dc.relation | /*ref*/J. A. Garcia-Nunez, M. R. Pelaez-Samaniego, M. E. Garcia-Perez, I. Fonts, J. Abrego, R. J. M. Westerhof, M. Garcia-Perez. Historical developments of pyrolysis reactors: a review. Energy Fuels. 2017; 31(6): 5751-5775. https://doi.org/10.1021/acs.energyfuels.7b00641. | |
dc.relation | /*ref*/K. Qian, A. Kumar, H. Zhang, D. Bellmer, R. Huhnke. Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 2015; 42: 1055-1064. https://doi.org/10.1016/j.rser.2014.10.074. | |
dc.relation | /*ref*/E. C. Hammer, Z. Balogh-Brunstad, I. Jakobsen, P. A. Olsson, S. L. S. Stipp, M. C. Rillig. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol. Biochem. 2014; 77: 252-260. https://doi.org/10.1016/j.soilbio.2014.06.012. | |
dc.relation | /*ref*/H. Zheng, Z. Wang, X. Deng, S. Herbert, B. Xing. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma. 2013; 206: 32-39. https://doi.org/10.1016/j.geoderma.2013.04.018. | |
dc.relation | /*ref*/X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu et. al. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 2015; 125: 70-85. https://doi.org/10.1016/j.chemosphere.2014.12.058. | |
dc.relation | /*ref*/S. H. Kong, S. K. Loh, R. T. Bachmann, Y. M. Choo, J. Salimon, S. A. Rahim. Production and physico-chemical characterization of biochar from palm kernel shell. 2013; 1571(1): 749-752. https://doi.org/10.1063/1.4858744. | |
dc.relation | /*ref*/M. Z. Alam, S. A. Muyubi, M. F. Mansor, R. Wahid. Activated carbons derived from oil palm empty-fruit bunches: Application to environmental problems. J. Environ. Sci. 2007; 19(1): 103-108. https://doi.org/10.1016/S1001-0742(07)60017-5. | |
dc.relation | /*ref*/I. A. W. Tan, B. H. Hameed, A. L. Ahmad. Equilibrium and kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem. Eng. J. 2007; 127(1-3): 111-119, https://doi.org/10.1016/j.cej.2006.09.010. | |
dc.relation | /*ref*/J. Guo, W. S. Xu, Y. L. Chen, A. C. Lua. Adsorption of NH3 onto activated carbon prepared from palm shells impregnated with H2SO4. J. Colloid Interface Sci. 2005; 281(2): 285-290. https://doi.org/10.1016/j.jcis.2004.08.101. | |
dc.relation | /*ref*/A. Tomczyk, Z. Sokołowska, P. Boguta. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020; 19(1): 191-215. https://doi.org/10.1007/s11157-020-09523-3. | |
dc.relation | /*ref*/L. Rodriguez Ortiz, E. Torres, D. Zalazar, H. Zhang, R. Rodriguez, G. Mazza. Influence of pyrolysis temperature and bio-waste composition on biochar characteristics. Renew. Energy. 2020; 155: 837-847. https://doi.org/10.1016/j.renene.2020.03.181. | |
dc.relation | /*ref*/X. Hu, X. Zhang, H. H. Ngo, W. Guo, H. Wen, C. Li, et al. Comparison study on the ammonium adsorption of the biochars derived from different kinds of fruit peel. Sci. Total Environ. 2020; 707: 135544. https://doi.org/10.1016/j.scitotenv.2019.135544. | |
dc.relation | /*ref*/Q. Yin, B. Zhang, R. Wang, Z. Zhao. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water: a review. Environ. Sci. Pollut. Res. 2017; 24(34): 26297-26309. https://doi.org/10.1007/s11356-017-0338-y. | |
dc.relation | /*ref*/A. Arami-Niya, W. M. A. Wan Daud, F. S. Mjalli. Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chem. Eng. Res. Des. 2011; 89(6): 657-664. https://doi.org/10.1016/j.cherd.2010.10.003. | |
dc.relation | /*ref*/R. Hoseinzadeh Hesas, A. Arami-Niya, W. M. A. Wan Daud, J. N. Sahu. Comparison of oil palm shell-based activated carbons produced by microwave and conventional heating methods using zinc chloride activation. J. Anal. Appl. Pyrolysis. 2013; 104: 176-184. https://doi.org/10.1016/j.jaap.2013.08.006. | |
dc.relation | /*ref*/T. Shu Hui, M. A. Ahmad Zaini. Potassium hydroxide activation of activated carbon: A commentary. Carbon Lett. 2015; 16(4): 275-280. https://doi.org/10.5714/CL.2015.16.4.275. | |
dc.relation | /*ref*/K. Yang, J. Peng, C. Srinivasakannan, L. Zhang, H. Xia, X. Duan. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour. Technol. 2010; 101(15): 6163-6169. https://doi.org/10.1016/j.biortech.2010.03.001. | |
dc.relation | /*ref*/D. Adinata, W. Wandaud, M. Aroua. Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresour. Technol. 2007; 98(1): 145-149. https://doi.org/10.1016/j.biortech.2005.11.006. | |
dc.relation | /*ref*/R. Azargohar, A. K. Dalai. Biochar as a precursor of activated carbon. Appl. Biochem. Biotechnol. 2006; 131: 762-773. https://doi.org/10.1385/ABAB:131:1:762. | |
dc.relation | /*ref*/F. Sulaiman, N. Abdullah. Pyrolytic product of washed and unwashed oil palm wastes by slow thermal conversion process. J. Phys. Sci. 2014; 25: 73-84. | |
dc.relation | /*ref*/R. F. Nascimento, A. C. A. Lima, C. B. Vidal, D. Q. Melo, G. S. Cabral Raulino. Adsorção: Aspectos teóricos e aplicações ambientais. 2014. 10.13140/RG.2.1.4340.1041. | |
dc.relation | /*ref*/Q. Zheng, L. Yang, D. Song, S. Zhang, H. Wu, S. Li, X. Wang. High adsorption capacity of Mg–Al-modified biochar for phosphate and its potential for phosphate interception in soil. Chemosphere. 2020; 259: 127469. https://doi.org/10.1016/j.chemosphere.2020.127469. | |
dc.relation | /*ref*/P. L. Searle. The berthelot or indophenol reaction and its use in the analytical chemistry of nitrogen. A review. Analyst. 1984; 109: 549-568. https://doi.org/10.1039/AN9840900549. | |
dc.relation | /*ref*/APHA. Standard methods for the examination of water and wastewater. Am. Public Heal. Assoc. 1999. | |
dc.relation | /*ref*/H. Yang, R. Yan, T. Chin, D. T. Liang, H. Chen, C. Zheng. Thermogravimetric analysis−Fourier transform infrared analysis of palm oil waste pyrolysis. Energy & Fuels. 2004; 18(6): 1814-1821. https://doi.org/10.1021/ef030193m. | |
dc.relation | /*ref*/J. García-Nuñez, M. García-Perez, K. C. Das. Determination of kinetic parameters of thermal degradation of palm oil mill by‐products using thermogravimetric analysis and differential scanning calorimetry. 2008; 51(2): 547-557. doi: 10.13031/2013.21519. | |
dc.relation | /*ref*/W. Suliman, J. B. Harsh, A. M. Fortuna, M. Garcia-Pérez, N. I. Abu-Lail. Quantitative effects of biochar oxidation and pyrolysis temperature on the transport of pathogenic and nonpathogenic Escherichia coli in biochar-amended sand columns. Environ. Sci. Technol. 2017; 51(9): 5071-5081. https://doi.org/10.1021/acs.est.6b04535. | |
dc.relation | /*ref*/W. Suliman, J. B. Harsh, N. I. Abu-Lail, A. M. Fortuna, I. Dallmeyer, M. Garcia-Perez. Modification of biochar surface by air oxidation: Role of pyrolysis temperature. Biomass Bioenergy. 2016; 85: 1-11. https://doi.org/10.1016/j.biombioe.2015.11.030. | |
dc.relation | /*ref*/I. Okman, S. Karagöz, T. Tay, M. Erdem. Activated carbons from grape seeds by chemical activation with potassium carbonate and potassium hydroxide. Appl. Surf. Sci. 2014; 293: 138-142. https://doi.org/10.1016/j.apsusc.2013.12.117. | |
dc.relation | /*ref*/T. M. Abdel-Fattah, M. E. Mahmoud, S. B. Ahmed, M. D. Huff, J. W. Lee, S. Kumar. Biochar from woody biomass for removing metal contaminants and carbon sequestration. J. Ind. Eng. Chem. 2013; 22: 103-109. https://doi.org/10.1016/j.jiec.2014.06.030. | |
dc.relation | /*ref*/M. I. Al-Wabel, A. Al-Omran, A. H. El-Naggar, M. Nadeem, A. R. Usman. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013; 131: 374-379. https://doi.org/10.1016/j.biortech.2012.12.165. | |
dc.relation | /*ref*/D. Angın. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol. 2013; 128: 593-597. https://doi.org/10.1016/j.biortech.2012.10.150. | |
dc.relation | /*ref*/H. Lin, S. Wang, L. Zhang, B. Ru, J. Zhou, Z. Luo. Structural evolution of chars from biomass components pyrolysis in a xenon lamp radiation reactor. Chinese J. Chem. Eng. 2017; 25: 232-237. https://doi.org/10.1016/j.cjche.2016.08.002. | |
dc.relation | /*ref*/Q. Abbas, G. Liu, B. Yousaf, M. U. Ali, H. Ullah, M. A. M. Munir, R. Liu. Contrasting effects of operating conditions and biomass particle size on bulk characteristics and surface chemistry of rice husk derived-biochars. J. Anal. Appl. Pyrol. 2018; 134: 281-292. https://doi.org/10.1016/j.jaap.2018.06.018. | |
dc.relation | /*ref*/J. Guo, C. C. Lua. Preparation and characterization of adsorbents from oil palm fruit solid wastes, J. Oil Palm Res. 2000; 12: 64-70. | |
dc.relation | /*ref*/M. K. Hossain, V. Strezov, K. Y. Chan, A. Ziolkowski, P. F. Nelson. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 2011; 92(1): 223-228. https://doi.org/10.1016/j.jenvman.2010.09.008. | |
dc.relation | /*ref*/M. Danish, R. Hashim, M. N. M. Ibrahim, O. Sulaiman. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass Bioenergy. 2014; 61: 167-178. https://doi.org/10.1016/j.biombioe.2013.12.008. | |
dc.relation | /*ref*/K. Thomas Klasson, M. Uchimiya, I. M. Lima. Uncovering surface area and micropores in almond shell biochars by rainwater wash. Chemosphere. 2014; 111: 129-134. https://doi.org/10.1016/j.chemosphere.2014.03.065. | |
dc.relation | /*ref*/A. Bin Noor, M. Asri, B. Mohd. Textural characteristics of activated carbons prepared from oil palm shells activated with ZnCl2 and pyrolysis under nitrogen and carbon dioxide. J. Phys. Sci. 2008; 19(2): 93-104. | |
dc.relation | /*ref*/A. R. Tobi, J. O. Dennis, H. M. Zaid, A. A. Adekoya, A. Yar, U. Fahad. Comparative analysis of physiochemical properties of physically activated carbon from palm bio-waste. J. Mater. Res. Technol. 2019; 8(5): 3688-3695. https://doi.org/10.1016/j.jmrt.2019.06.015. | |
dc.relation | /*ref*/G. Chang, P. Shi, Y. Guo, L. Wang, C. Wang, Q. Guo. Enhanced pyrolysis of palm kernel shell wastes to bio-based chemicals and syngas using red mud as an additive. J. Clean. Prod. 2020; 272: 122847. https://doi.org/10.1016/j.jclepro.2020.122847. | |
dc.relation | /*ref*/Q. Yin, B. Zhang, R. Wang, Z. Zhao. Phosphate and ammonium adsorption of sesame straw biochars produced at different pyrolysis temperatures. Environ. Sci. Pollut. Res. 2018; 25: 4320-4329. 10.1007/s11356-017-0778-4. | |
dc.relation | /*ref*/Z. Wang, H. Guo, F. Shen, G. Yang, Y. Zhang, Y. Zeng, et al. Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH+4), nitrate (NO-3), and phosphate (PO3-4). Chemosphere. 2015; 119: 646-653. https://doi.org/10.1016/j.chemosphere.2014.07.084. | |
dc.relation | /*ref*/C. A. Takaya, L. A. Fletcher, S. Singh, K. U. Anyikude, A. B. Ross. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes. Chemosphere. 2016; 145: 518-527. https://doi.org/10.1016/j.chemosphere.2015.11.052. | |
dc.relation | /*ref*/R. Boopathy, S. Karthikeyan, A. B. Mandal, G. Sekaran. Adsorption of ammonium ion by coconut shell-activated carbon from aqueous solution: kinetic, isotherm, and thermodynamic studies. Environ. Sci. Pollut. Res. 2013; 20: 533-542. 10.1007/s11356-012-0911-3. | |
dc.relation | /*ref*/Z. Zeng, S. Da Zhang, T. Q. Li, F. L. Zhao, Z. L. He, H. P. Zhao, et al. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants. J. Zhejiang Univ. Sci. B. 2013; 14: 1152-1161. https://doi.org/10.1631/jzus.B1300102. | |
dc.relation | /*ref*/Y. Yao, B. Gao, M. Zhang, M. Inyang, A. R. Zimmerman. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere. 2012; 89(11): 1467-1471. https://doi.org/10.1016/j.chemosphere.2012.06.002. | |
dc.relation | /*ref*/N. Tsubouchi, M. Nishio, Y. Mochizuki. Role of nitrogen in pore development in activated carbon prepared by potassium carbonate activation of lignin. Appl. Surf. Sci. 2016; 371: 301-306. https://doi.org/10.1016/j.apsusc.2016.02.200. | |
dc.relation | /*ref*/B. Qiu, F. Duan. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism. Colloids Surfaces A Physicochem. Eng. Asp. 2019; 571: 86-93. https://doi.org/10.1016/j.colsurfa.2019.03.041. | |
dc.relation | /*ref*/G. Xu, J. Sun, H. Shao, S. X. Chang. Biochar had effects on phosphorus sorption and desorption in three soils with differing acidity. Ecol. Eng. 2014; 62: 54-60. https://doi.org/10.1016/j.ecoleng.2013.10.027. | |
dc.relation | /*ref*/T. Qian, X. Zhang, J. Hu, H. Jiang. Effects of environmental conditions on the release of phosphorus from biochar. Chemosphere. 2013; 93(9): 2069-2075. https://doi.org/10.1016/j.chemosphere.2013.07.041. | |
dc.relation | /*ref*/S. H. I. Zhong-liang, L. I. U. Fu-mei, Y. A. O. Shu-hua. Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe (III) oxide. New Carbon Mater. 2011; 26(4): 299-306. https://doi.org/10.1016/S1872-5805(11)60083-8. | |
dc.relation | /*ref*/J. O. Eduah, E. K. Nartey, M. K. Abekoe, S. W. Henriksen, M. N. Andersen. Mechanism of orthophosphate (PO4-P) adsorption onto different biochars. Environ. Technol. Innov. 2020; 17: 100572. https://doi.org/10.1016/j.eti.2019.100572. | |
dc.relation | /*ref*/Y. Yao, B. Gao, M. Inyang, A. R. Zimmerman, X. Cao, P. Pullammanappallil, et al. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J. Hazard. Mater. 2011; 190: 501-507. https://doi.org/10.1016/j.jhazmat.2011.03.083. | |
dc.relation | /*ref*/C. Banik, M. Lawrinenko, S. Bakshi, D. A. Laird. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. J. Environ. Qual. 2018; 47(3): 452-461. https://doi.org/10.2134/jeq2017.11.0432. | |
dc.relation | /*ref*/H. Shin, D. Tiwari, D. J. Kim. Phosphate adsorption/desorption kinetics and P bioavailability of Mg-biochar from ground coffee waste. J. Water Process Eng. 2020; 37: 101484. https://doi.org/10.1016/j.jwpe.2020.101484. | |
dc.relation | /*ref*/S. M. Heilmann, J. S. Molde, J. G. Timler, B. M. Wood, A. L. Mikula, G. V. Vozhdayev, et al. Phosphorus Reclamation through | |
dc.relation | /*ref*/Hydrothermal Carbonization of Animal Manures. Environ. Sci. Technol. 2014. https://doi.org/10.1021/es501872k. | |
dc.relation | /*ref*/M. Zhang, B. Gao, Y. Yao, Y. Xue, M. Inyang. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem. Eng. J. 2012; 210: 26-32. https://doi.org/10.1016/j.cej.2012.08.052. | |
dc.relation | /*ref*/L. Min, Z. Zhongsheng, L. Zhe, W. Haitao. Removal of nitrogen and phosphorus pollutants from water by FeCl3 – impregnated biochar. Ecol. Eng. 2020; 149: 105792. https://doi.org/10.1016/j.ecoleng.2020.105792. | |
dc.relation | /*ref*/J. H. Park, Y. S. Ok, S. H. Kim, J. S. Cho, J. S. Heo, R. D. Delaune, D. C. Seo. Evaluation of phosphorus adsorption capacity of sesame straw biochar on aqueous solution: influence of activation methods and pyrolysis temperatures. Environ. Geochem. Health. 2015; 37: 969-983. https://doi.org/10.1007/s10653-015-9709-9. | |
dc.relation | /*ref*/M. Carrier, A. G. Hardie, Ü. Uras, J. Görgens, J. (Hansie) Knoetze. Production of char from vacuum pyrolysis of South-African sugar cane bagasse and its characterization as activated carbon and biochar. J. Anal. Appl. Pyrol. 2012; 96: 24-32. https://doi.org/10.1016/j.jaap.2012.02.016. | |
dc.relation | /*ref*/Z. Li, Z. Song, B. P. Singh, H. Wang. The impact of crop residue biochars on silicon and nutrient cycles in croplands. Sci. Total Environ. 2019; 659: 673-680. https:// doi.org/10.1016/j.scitotenv.2018.12.381. | |
dc.relation | /*ref*/T. J. Purakayastha, T. Bera, D. Bhaduri, B. Sarkar, S. Mandal, P. Wade, et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security, Chemosphere. 2019; 227: 345-365. https://doi.org/10.1016/j.chemosphere.2019.03.170. | |
dc.relation | /*ref*/S. Kilpimaa, H. Runtti, T. Kangas, U. Lassi, T. Kuokkanen. Removal of phosphate and nitrate over a modified carbon residue from biomass gasification. Chem. Eng. Res. Des. 2014; 92(10): 1923-1933. https://doi.org/10.1016/j.cherd.2014.03.019. | |
dc.rights | Derechos de autor 2024 Palmas | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc-nd/4.0 | es-ES |
dc.source | Palmas; Vol. 45 Núm. 2 (2024): Palmas; 67-88 | es-ES |
dc.source | 2744-8266 | |
dc.subject | Activación química | es-ES |
dc.subject | Biocarbón | es-ES |
dc.subject | Eutrophication | es-ES |
dc.subject | Oxidación | es-ES |
dc.subject | Pirólisis | es-ES |
dc.title | Adsorption of Ammonium and Phosphates by Biochar Produced from Oil Palm Shells: Effects of Production Conditions | en-US |
dc.title | Adsorción de amonio y fosfatos por biocarbón producido a partir de cuescos de palma de aceite: efectos de las condiciones de producción | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |