Show simple item record

dc.creatorGallego García, Alejandra
dc.creatorRincón Romero, Víctor Orlando
dc.creatorCortés, Tatiana
dc.creatorUricohechea, Alejandro
dc.date2024-09-19
dc.date.accessioned2025-03-14T11:23:38Z
dc.date.available2025-03-14T11:23:38Z
dc.identifierhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/14270
dc.identifier.urihttps://repositorio.fedepalma.org/handle/123456789/145765
dc.descriptionEl estudio se centra en el uso de ortofotomosaicos de dron y análisis de índices espectrales RGB (rojo, verde y azul, por sus siglas en inglés), para discriminar palmas de aceite vivas y muertas en una base de datos geográfica. El principal hallazgo radica en la determinación de valores de rango para el índice denominado Índice de Vegetación Verde (GLI, por sus siglas en inglés), que permitió obtener una discriminación precisa entre palmas vivas y muertas. Este enfoque no solo actualiza de manera eficiente el inventario de palmas de aceite, sino que también identifica áreas específicas que requieren intervención agronómica. Este trabajo contribuye significativamente al desarrollo de métodos innovadores para la monitorización de cultivos mediante el apoyo de prácticas agronómicas sostenibles al tiempo que se encamina hacia una gestión más eficiente de los recursos agrícolas.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.languagespa
dc.publisherFedepalmaes-ES
dc.relationhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/14270/14213
dc.relationhttps://publicaciones.fedepalma.org/index.php/palmas/article/view/14270/14232
dc.relation/*ref*/Ballesteros, R., Ortega, J. F., Hernández, D., & Moreno, M. A. (2014). Applications of georeferenced high-resolution images obtained with unmanned aerial vehicles. Part I: Description of image acquisition and processing. Precision Agriculture, 15(6), 579-592. https://doi.org/10.1007/s11119-014-9355-8
dc.relation/*ref*/Bendig, J., Yu, K., Aasen, H., Bolten, A., Bennertz, S., Broscheit, J., Gnyp, M. L., & Bareth, G. (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. International Journal of Applied Earth Observations and Geoinformation, Volume 39, p. 79-87. https://www.sciencedirect.com/science/article/abs/pii/S0303243415000446?via%3Dihub
dc.relation/*ref*/Congedo, L., (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172.https://doi.org/10.21105/joss.03172
dc.relation/*ref*/Duarte, L., Silva, P., & Teodoro, A. C. (2018). Development of a QGIS plugin to obtain parameters and elements of plantation trees and vineyards with aerial photographs. ISPRS International Journal of Geo-Information, 7(3), 14-19. https://doi.org/10.3390/ijgi7030109
dc.relation/*ref*/Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Centro de Tecnologías Avanzadas de Información para la Gestión de Tierras, Facultad de Ciencias de los Recursos Naturales, Universidad de Nebraska-Lincoln. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1151&context=natrespapers
dc.relation/*ref*/Lebourgeois, V., Bégué, A., Labbé, S., Mallavan, B., Prévot, L., & Roux, B. (2008). Can commercial digital cameras be used as multispectral sensors? A crop monitoring test. Sensors, 8(11), 7300-7322. https://doi.org/10.3390/s8117300
dc.relation/*ref*/Louhaichi, M., Borman, M., Johnson, D. (2001). Spatially Located Platform and Aerial Photography for Documentation of Grazing Impacts on Wheat. Geocarto International. 16:1; 65-70. DOI: 10.1080/10106040108542184. https://www.researchgate.net/publication/228906661_Spatially_Located_Platform_and_Aerial_Photography_for_Documentation_of_Grazing_Impacts_on_Wheat
dc.relation/*ref*/Lussem, U., Bolten, A., Gnyp, M. L., Jasper, J., & Bareth, G. (2018). Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in Grassland. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 42(3), 1215-1219. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018
dc.relation/*ref*/QGIS Development Team. (2021). QGIS Geographic Information System (3.16.7 (2021-01-14)). Open Source Geospatial Foundation Project. https://www.qgis.org/
dc.relation/*ref*/Qubaa, A. R., Aljawwadi, T. A., Hamdoon, A. N., & Mohammed, R. M. (2021). Using UAVs/drones and vegetation indices in the visible spectrum to monitoring agricultural lands. Iraqi Journal of Agricultural Sciences, 52(3), 601-610. https://doi.org/10.36103/ijas.v52i3.1349
dc.relation/*ref*/Rasmussen, J., Ntakos, G., Nielsen, J., Svensgaard, J., Poulsen, R. N., & Christensen, S. (2016). Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? European Journal of Agronomy, 74, 75-92. https://doi.org/10.1016/j.eja.2015.11.026
dc.relation/*ref*/Saberioon MM, Amin MSM, Anuar AR, Gholizadeh A, Wayayok A, Khairunniza-Bejo S. (2014). Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. International Journal of Applied Earth Observation and Geoinformation, Amsterdam 32: 35-45. https://www.sciencedirect.com/science/article/abs/pii/S0303243414000762
dc.relation/*ref*/Svensgaard, J., Jensen, S. M., Christensen, S., & Rasmussen, J. (2021). The importance of spectral correction of UAV-based phenotyping with RGB cameras. Field Crops Research, 269. https://doi.org/10.1016/j.fcr.2021.108177
dc.rightsDerechos de autor 2024 Palmases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/4.0es-ES
dc.sourcePalmas; Vol. 45 Núm. 2 (2024): Palmas; 96-105es-ES
dc.source2744-8266
dc.subjectPalma de aceitees-ES
dc.subjectÍndice de vegetaciónes-ES
dc.subjectOrtofotografíases-ES
dc.subjectOrtofotomosaicoses-ES
dc.titleInventario de palmas a partir de índices espectrales RGB obtenidos con drones-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeSegundo puesto categoría ambientales-ES


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record